Categories Menu

Du bon sens dans notre assiette, ce que nous avons oublié de nos ancêtres chasseurs-cueilleurs

Couverture Du bon sens dans notre assiette

Références bibliographiques

(1)      OMS. Aide-mémoire sur les maladies non transmissibles. https://www.who.int/fr/news-room/fact-sheets/detail/noncommunicable-diseases.

(2)      Wei, X.; Ning, P.; Cheng, X.; Hu, G. [Disease burden among people aged 70 years or older in countries with different developmental levels from 1990 to 2016]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2019, 44 (2), 193–200. https://doi.org/10.11817/j.issn.1672-7347.2019.02.012.

(3)      Jaacks, L. M.; Vandevijvere, S.; Pan, A.; McGowan, C. J.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The Obesity Transition: Stages of the Global Epidemic. Lancet Diabetes Endocrinol. 2019, 7 (3), 231–240. https://doi.org/10.1016/S2213-8587(19)30026-9.

(4)      Webber, L.; Divajeva, D.; Marsh, T.; McPherson, K.; Brown, M.; Galea, G.; Breda, J. The Future Burden of Obesity-Related Diseases in the 53 WHO European-Region Countries and the Impact of Effective Interventions: A Modelling Study. BMJ Open 2014, 4 (7), e004787. https://doi.org/10.1136/bmjopen-2014-004787.

(5)      OMS. Diabète. Who.int. https://www.who.int/fr/news-room/fact-sheets/detail/diabetes (accessed 2020-01-05).

(6)      GBD 2017 Diet Collaborators. Health Effects of Dietary Risks in 195 Countries, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet Lond. Engl. 2019, 393 (10184), 1958–1972. https://doi.org/10.1016/S0140-6736(19)30041-8.

(7)      OMS. La démence. Who.int. https://www.who.int/fr/news-room/fact-sheets/detail/dementia (accessed 2020-01-06).

(8)      Feigin, V. L. and al. Global, Regional, and National Burden of Neurological Disorders during 1990–2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017, 16 (11), 877–897. https://doi.org/10.1016/S1474-4422(17)30299-5.

(9)      Lakhbab, F.-Z. Progression des maladies allergiques : impact du mode de vie et de l’environnement, prise en charge et rôle du pharmacien, Université de Bordeaux, Bordeaux, 2017.

(10)    Schotthoefer, A. M.; Frost, H. M. Ecology and Epidemiology of Lyme Borreliosis. Clin. Lab. Med. 2015, 35 (4), 723–743. https://doi.org/10.1016/j.cll.2015.08.003.

(11)    OMS. La dépression en Europe. WHO. http://www.euro.who.int/fr/health-topics/noncommunicable-diseases/mental-health/news/news/2012/10/depression-in-europe (accessed 2020-01-14). http://www.euro.who.int/fr/health-topics/noncommunicable-diseases/mental-health/news/news/2012/10/depression-in-europe.

(12)    Dobbs, R.; Sawers, C.; Thompson, F.; Manyika, J.; Woetzel, J.; Child, P.; McKenna, S.; Spatharou, A. How the World Could Better Fight Obesity; McKinsey Global Institute, 2014.

(13)    Charbonnel, B.; Simon, D.; Dallongeville, J.; Bureau, I.; Gourmelen, J.; Detournay, B. Coût du diabète de type 2 en France : une analyse des données de l’EGB. Médecine Mal. Métaboliques 2017, 11, IIS24–IIS27. https://doi.org/10.1016/S1957-2557(18)30027-0.

(14)    Lajugie, D.; Bertin, N.; Chantelou, M.; Vallier, N.; Weill, A.; Fender, P.; Allemand, H. The Prevalence of Parkinson’s Disease and Its Cost to the French National Health Fund in Metropolitan France in 2000. Rev. Médicale Assur. Mal. 2005.

(15)    Barabási, A.-L.; Menichetti, G.; Loscalzo, J. The Unmapped Chemical Complexity of Our Diet. Nat. Food 2020, 1 (1), 33–37. https://doi.org/10.1038/s43016-019-0005-1.

(16)    Pollack, R. M.; Barzilai, N.; Anghel, V.; Kulkarni, A. S.; Golden, A.; O’Broin, P.; Sinclair, D. A.; Bonkowski, M. S.; Coleville, A. J.; Powell, D.; Kim, S.; Moaddel, R.; Stein, D.; Zhang, K.; Hawkins, M.; Crandall, J. P. Resveratrol Improves Vascular Function and Mitochondrial Number but Not Glucose Metabolism in Older Adults. J. Gerontol. A. Biol. Sci. Med. Sci. 2017, 72 (12), 1703–1709. https://doi.org/10.1093/gerona/glx041.

(17)    De Ligt, M.; Bruls, Y. M. H.; Hansen, J.; Habets, M.-F.; Havekes, B.; Nascimento, E. B. M.; Moonen-Kornips, E.; Schaart, G.; Schrauwen-Hinderling, V. B.; van Marken Lichtenbelt, W.; Schrauwen, P. Resveratrol Improves Ex Vivo Mitochondrial Function but Does Not Affect Insulin Sensitivity or Brown Adipose Tissue in First Degree Relatives of Patients with Type 2 Diabetes. Mol. Metab. 2018, 12, 39–47. https://doi.org/10.1016/j.molmet.2018.04.004.

(18)    Weiskirchen, S.; Weiskirchen, R. Resveratrol: How Much Wine Do You Have to Drink to Stay Healthy? Adv. Nutr. 2016, 7 (4), 706–718. https://doi.org/10.3945/an.115.011627.

(19)    Mishra, S.; Stierman, B.; Gahche, J. J.; Potischman, N. Dietary Supplement Use Among Adults: United States, 2017-2018. NCHS Data Brief 2021, No. 399, 1–8.

(20)    Rundblad, A.; Holven, K. B.; Ottestad, I.; Myhrstad, M. C.; Ulven, S. M. High-Quality Fish Oil Has a More Favourable Effect than Oxidised Fish Oil on Intermediate-Density Lipoprotein and LDL Subclasses: A Randomised Controlled Trial. Br. J. Nutr. 2017, 117 (9), 1291–1298. https://doi.org/10.1017/S0007114517001167.

(21)    Pike, O. A.; Peng, I. C. Stability of Shell Egg and Liquid Yolk to Lipid Oxidation. Poult Sci 1985, 64 (8), 1470–1475. https://doi.org/10.3382/ps.0641470.

(22)    Ortiz, J.; Vivanco, J. P.; Aubourg, S. P. Lipid and Sensory Quality of Canned Atlantic Salmon (Salmo Salar): Effect of the Use of Different Seaweed Extracts as Covering Liquids. Eur. J. Lipid Sci. Technol. 2014, 116 (5), 596–605. https://doi.org/10.1002/ejlt.201300239.

(23)    Zhong, V. W.; Van Horn, L.; Cornelis, M. C.; Wilkins, J. T.; Ning, H.; Carnethon, M. R.; Greenland, P.; Mentz, R. J.; Tucker, K. L.; Zhao, L.; Norwood, A. F.; Lloyd-Jones, D. M.; Allen, N. B. Associations of Dietary Cholesterol or Egg Consumption With Incident Cardiovascular Disease and Mortality. JAMA 2019, 321 (11), 1081–1095. https://doi.org/10.1001/jama.2019.1572.

(24)    Drouin-Chartier, J.-P.; Chen, S.; Li, Y.; Schwab, A. L.; Stampfer, M. J.; Sacks, F. M.; Rosner, B.; Willett, W. C.; Hu, F. B.; Bhupathiraju, S. N. Egg Consumption and Risk of Cardiovascular Disease: Three Large Prospective US Cohort Studies, Systematic Review, and Updated Meta-Analysis. BMJ 2020, 368. https://doi.org/10.1136/bmj.m513.

(25)    Shin, J. Y.; Xun, P.; Nakamura, Y.; He, K. Egg Consumption in Relation to Risk of Cardiovascular Disease and Diabetes: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2013, 98 (1), 146–159. https://doi.org/10.3945/ajcn.112.051318.

(26)    Djoussé, L.; Petrone, A. B.; Hickson, D. A.; Talegawkar, S. A.; Dubbert, P. M.; Taylor, H.; Tucker, K. L. Egg Consumption and Risk of Type 2 Diabetes among African Americans: The Jackson Heart Study. Clin. Nutr. Edinb. Scotl. 2016, 35 (3), 679–684. https://doi.org/10.1016/j.clnu.2015.04.016.

(27)    Tamez, M.; Virtanen, J. K.; Lajous, M. Egg Consumption and Risk of Incident Type 2 Diabetes: A Dose-Response Meta-Analysis of Prospective Cohort Studies. Br. J. Nutr. 2016, 115 (12), 2212–2218. https://doi.org/10.1017/S000711451600146X.

(28)    Wallin, A.; Forouhi, N. G.; Wolk, A.; Larsson, S. C. Egg Consumption and Risk of Type 2 Diabetes: A Prospective Study and Dose-Response Meta-Analysis. Diabetologia 2016, 59 (6), 1204–1213. https://doi.org/10.1007/s00125-016-3923-6.

(29)    Kurotani, K.; Nanri, A.; Goto, A.; Mizoue, T.; Noda, M.; Oba, S.; Sawada, N.; Tsugane, S.; Japan Public Health Center-based Prospective Study Group. Cholesterol and Egg Intakes and the Risk of Type 2 Diabetes: The Japan Public Health Center-Based Prospective Study. Br. J. Nutr. 2014, 112 (10), 1636–1643. https://doi.org/10.1017/S000711451400258X.

(30)    Richard, C.; Cristall, L.; Fleming, E.; Lewis, E. D.; Ricupero, M.; Jacobs, R. L.; Field, C. J. Impact of Egg Consumption on Cardiovascular Risk Factors in Individuals with Type 2 Diabetes and at Risk for Developing Diabetes: A Systematic Review of Randomized Nutritional Intervention Studies. Can. J. Diabetes 2017, 41 (4), 453–463. https://doi.org/10.1016/j.jcjd.2016.12.002.

(31)    Fuller, N. R.; Caterson, I. D.; Sainsbury, A.; Denyer, G.; Fong, M.; Gerofi, J.; Baqleh, K.; Williams, K. H.; Lau, N. S.; Markovic, T. P. The Effect of a High-Egg Diet on Cardiovascular Risk Factors in People with Type 2 Diabetes: The Diabetes and Egg (DIABEGG) Study—a 3-Mo Randomized Controlled Trial. Am. J. Clin. Nutr. 2015, 101 (4), 705–713. https://doi.org/10.3945/ajcn.114.096925.

(32)    Geiker, N. R. W.; Larsen, M. L.; Dyerberg, J.; Stender, S.; Astrup, A. Egg Consumption, Cardiovascular Diseases and Type 2 Diabetes. Eur. J. Clin. Nutr. 2018, 72 (1), 44–56. https://doi.org/10.1038/ejcn.2017.153.

(33)    Rouhani, M. H.; Rashidi-Pourfard, N.; Salehi-Abargouei, A.; Karimi, M.; Haghighatdoost, F. Effects of Egg Consumption on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Am. Coll. Nutr. 2018, 37 (2), 99–110. https://doi.org/10.1080/07315724.2017.1366878.

(34)    Zhang, X.; Lv, M.; Luo, X.; Estill, J.; Wang, L.; Ren, M.; Liu, Y.; Feng, Z.; Wang, J.; Wang, X.; Chen, Y. Egg Consumption and Health Outcomes: A Global Evidence Mapping Based on an Overview of Systematic Reviews. Ann. Transl. Med. 2020, 8 (21), 1343. https://doi.org/10.21037/atm-20-4243.

(35)    Ioannidis, J. P. A. The Challenge of Reforming Nutritional Epidemiologic Research. JAMA 2018, 320 (10), 969–970. https://doi.org/10.1001/jama.2018.11025.

(36)    Bekelman, J. E.; Li, Y.; Gross, C. P. Scope and Impact of Financial Conflicts of Interest in Biomedical Research: A Systematic Review. JAMA 2003, 289 (4), 454–465. https://doi.org/10.1001/jama.289.4.454.

(37)    Choudhry, N. K.; Stelfox, H. T.; Detsky, A. S. Relationships between Authors of Clinical Practice Guidelines and the Pharmaceutical Industry. JAMA 2002, 287 (5), 612–617. https://doi.org/10.1001/jama.287.5.612.

(38)    Lesser, L. I.; Ebbeling, C. B.; Goozner, M.; Wypij, D.; Ludwig, D. S. Relationship between Funding Source and Conclusion among Nutrition-Related Scientific Articles. PLoS Med. 2007, 4 (1), e5. https://doi.org/10.1371/journal.pmed.0040005.

(39)    Bes-Rastrollo, M.; Schulze, M. B.; Ruiz-Canela, M.; Martinez-Gonzalez, M. A. Financial Conflicts of Interest and Reporting Bias Regarding the Association between Sugar-Sweetened Beverages and Weight Gain: A Systematic Review of Systematic Reviews. PLoS Med. 2013, 10 (12). https://doi.org/10.1371/journal.pmed.1001578.

(40)    Mandrioli, D.; Kearns, C. E.; Bero, L. A. Relationship between Research Outcomes and Risk of Bias, Study Sponsorship, and Author Financial Conflicts of Interest in Reviews of the Effects of Artificially Sweetened Beverages on Weight Outcomes: A Systematic Review of Reviews. PloS One 2016, 11 (9), e0162198. https://doi.org/10.1371/journal.pone.0162198.

(41)    Bischoff-Ferrari, H. A.; Dawson-Hughes, B.; Baron, J. A.; Burckhardt, P.; Li, R.; Spiegelman, D.; Specker, B.; Orav, J. E.; Wong, J. B.; Staehelin, H. B.; O’Reilly, E.; Kiel, D. P.; Willett, W. C. Calcium Intake and Hip Fracture Risk in Men and Women: A Meta-Analysis of Prospective Cohort Studies and Randomized Controlled Trials. Am. J. Clin. Nutr. 2007, 86 (6), 1780–1790. https://doi.org/10.1093/ajcn/86.5.1780.

(42)    Nieves, J. W.; Barrett-Connor, E.; Siris, E. S.; Zion, M.; Barlas, S.; Chen, Y. T. Calcium and Vitamin D Intake Influence Bone Mass, but Not Short-Term Fracture Risk, in Caucasian Postmenopausal Women from the National Osteoporosis Risk Assessment (NORA) Study. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2008, 19 (5), 673–679. https://doi.org/10.1007/s00198-007-0501-2.

(43)    Feskanich, D.; Bischoff-Ferrari, H. A.; Frazier, A. L.; Willett, W. C. Milk Consumption during Teenage Years and Risk of Hip Fractures in Older Adults. JAMA Pediatr. 2014, 168 (1), 54–60. https://doi.org/10.1001/jamapediatrics.2013.3821.

(44)    Tai, V.; Leung, W.; Grey, A.; Reid, I. R.; Bolland, M. J. Calcium Intake and Bone Mineral Density: Systematic Review and Meta-Analysis. BMJ 2015, 351, h4183. https://doi.org/10.1136/bmj.h4183.

(45)    Zhao, J.-G.; Zeng, X.-T.; Wang, J.; Liu, L. Association Between Calcium or Vitamin D Supplementation and Fracture Incidence in Community-Dwelling Older Adults: A Systematic Review and Meta-Analysis. JAMA 2017, 318 (24), 2466–2482. https://doi.org/10.1001/jama.2017.19344.

(46)    Chartres, N.; Fabbri, A.; McDonald, S.; Diong, J.; McKenzie, J. E.; Bero, L. Association of Food Industry Ties with Findings of Studies Examining the Effect of Dairy Food Intake on Cardiovascular Disease and Mortality: Systematic Review and Meta-Analysis. BMJ Open 2020, 10 (12), e039036. https://doi.org/10.1136/bmjopen-2020-039036.

Partie 1 notes

(1)      Bernard, C.; Bert, P. La science expérimentale; J.B. Baillière & fils, 1878.

(2)      Eaton, S. B.; Konner, M. Paleolithic Nutrition. A Consideration of Its Nature and Current Implications. N. Engl. J. Med. 1985, 312 (5), 283–289. https://doi.org/10.1056/NEJM198501313120505.

(3)      Konner, M.; Eaton, S. B. Paleolithic Nutrition: Twenty-Five Years Later. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 2010, 25 (6), 594–602. https://doi.org/10.1177/0884533610385702.

(4)      Scerri, E. M. L.; Thomas, M. G.; Manica, A.; Gunz, P.; Stock, J. T.; Stringer, C.; Grove, M.; Groucutt, H. S.; Timmermann, A.; Rightmire, G. P.; d’Errico, F.; Tryon, C. A.; Drake, N. A.; Brooks, A. S.; Dennell, R. W.; Durbin, R.; Henn, B. M.; Lee-Thorp, J.; deMenocal, P.; Petraglia, M. D.; Thompson, J. C.; Scally, A.; Chikhi, L. Did Our Species Evolve in Subdivided Populations across Africa, and Why Does It Matter? Trends Ecol. Evol. 2018, 33 (8), 582–594. https://doi.org/10.1016/j.tree.2018.05.005.

(5)      Bird, D.; Bird, R. Martu Children’s Hunting Strategies in the Western Desert, Australia. Hunt. Gatherer Child. 2005, 129–146.

(6)      Tucker, B.; Young, A. G. Growing up Mikea: Children’s Time Allocation and Tuber Foraging in Southwestern Madagascar. Hunt.-Gatherer Child. Evol. Dev. Cult. Perspect. 2005, 147–171.

(7)      Raubenheimer, D.; Rothman, J. M.; Pontzer, H.; Simpson, S. J. Macronutrient Contributions of Insects to the Diets of Hunter-Gatherers: A Geometric Analysis. J. Hum. Evol. 2014, 71, 70–76. https://doi.org/10.1016/j.jhevol.2014.02.007.

(8)      Crittenden, A. N.; Schnorr, S. L. Current Views on Hunter-Gatherer Nutrition and the Evolution of the Human Diet. Am. J. Phys. Anthropol. 2017, 162 Suppl 63, 84–109. https://doi.org/10.1002/ajpa.23148.

(9)      Milton, K. Hunter-Gatherer Diets-a Different Perspective. Am. J. Clin. Nutr. 2000, 71 (3), 665–667. https://doi.org/10.1093/ajcn/71.3.665.

(10)    Kellner, C. M.; Schoeninger, M. J. A Simple Carbon Isotope Model for Reconstructing Prehistoric Human Diet. Am. J. Phys. Anthropol. 2007, 133 (4), 1112–1127. https://doi.org/10.1002/ajpa.20618.

(11)    Potts, R. Environmental Hypotheses of Hominin Evolution. Am. J. Phys. Anthropol. 1998, Suppl 27, 93–136. https://doi.org/10.1002/(sici)1096-8644(1998)107:27+<93::aid-ajpa5>3.0.co;2-x.

(12)    Ho, K. J.; Mikkelson, B.; Lewis, L. A.; Feldman, S. A.; Taylor, C. B. Alaskan Arctic Eskimo: Responses to a Customary High Fat Diet. Am. J. Clin. Nutr. 1972, 25 (8), 737–745. https://doi.org/10.1093/ajcn/25.8.737.

(13)    Eaton, S. B.; Eaton Iii, S.; Konner, M. J. Review Paleolithic Nutrition Revisited: A Twelve-Year Retrospective on Its Nature and Implications. Eur. J. Clin. Nutr. 1997, 51 (4), 207–216. https://doi.org/10.1038/sj.ejcn.1600389.

(14)    Cordain, L.; Miller, J. B.; Eaton, S. B.; Mann, N.; Holt, S. H.; Speth, J. D. Plant-Animal Subsistence Ratios and Macronutrient Energy Estimations in Worldwide Hunter-Gatherer Diets. Am. J. Clin. Nutr. 2000, 71 (3), 682–692. https://doi.org/10.1093/ajcn/71.3.682.

(15)    Eaton, S. B. The Ancestral Human Diet: What Was It and Should It Be a Paradigm for Contemporary Nutrition? Proc. Nutr. Soc. 2006, 65 (1), 1–6. https://doi.org/10.1079/pns2005471.

(16)    Wilde, P. E.; Llobrera, J. Using the Thrifty Food Plan to Assess the Cost of a Nutritious Diet. J. Consum. Aff. 2009, 43 (2), 274–304. https://doi.org/10.1111/j.1745-6606.2009.01140.x.

(17)    Metzgar, M.; Rideout, T. C.; Fontes-Villalba, M.; Kuipers, R. S. The Feasibility of a Paleolithic Diet for Low-Income Consumers. Nutr. Res. 2011, 31 (6), 444–451. https://doi.org/10.1016/j.nutres.2011.05.008.

(18)    Patterson, E.; Wall, R.; Fitzgerald, G. F.; Ross, R. P.; Stanton, C. Health Implications of High Dietary Omega-6 Polyunsaturated Fatty Acids. J. Nutr. Metab. 2012, 2012, 539426. https://doi.org/10.1155/2012/539426.

(19)    ANSES. Apports En Acides Gras de La Population Vivant En France et Comparaison Aux Apports Nutritionnels Conseillés Définis En 2010, 2015.

(20)    ANSES. Etude Individuelle Nationale Des Consommations Alimentaires 3 (INCA3); Rapport d’expertise collective; ANSES, 2017.

(21)    Gurven, M.; Kaplan, H. Longevity Among Hunter- Gatherers: A Cross-Cultural Examination. Popul. Dev. Rev. 2007, 33 (2), 321–365. https://doi.org/10.1111/j.1728-4457.2007.00171.x.

(22)    Hawkes, K.; O’Connell, J.; Blurton-Jones, N.; Alvarez, H.; Charnov, E. The Grandmother Hypothesis and Human Evolution: An Anthropological Perspective; 2017; pp 237–258. https://doi.org/10.4324/9781351329200-15.

(23)    Koster, J. and col.  The Life History Of Human Foraging: Cross-Cultural And Individual Variation. bioRxiv 2019, 574483. https://doi.org/10.1101/574483.

(24)    Lindeberg, S.; Berntorp, E.; Nilsson-Ehle, P.; Terént, A.; Vessby, B. Age Relations of Cardiovascular Risk Factors in a Traditional Melanesian Society: The Kitava Study. Am. J. Clin. Nutr. 1997, 66 (4), 845–852. https://doi.org/10.1093/ajcn/66.4.845.

(25)    Benet, S. Abkhasians: The Long Living People of the Caucasus (Case Studies in Cultural Anthropology), Holt Rinehart&Winston.; 1974.

(26)    Turner, B. L.; Thompson, A. L. Beyond the Paleolithic Prescription: Incorporating Diversity and Flexibility in the Study of Human Diet Evolution. Nutr. Rev. 2013, 71 (8), 501–510. https://doi.org/10.1111/nure.12039.

(27)    Johnson, A. R. The Paleo Diet and the American Weight Loss Utopia, 1975–2014. Utop. Stud. 2015, 26 (1), 101–124. https://doi.org/10.5325/utopianstudies.26.1.0101.

(28)    Pitt, C. E. Cutting through the Paleo Hype: The Evidence for the Palaeolithic Diet. Aust. Fam. Physician 2016, 45 (1), 35–38.

(29)    Lane, N.; Martin, W. The Energetics of Genome Complexity. Nature 2010, 467 (7318), 929–934. https://doi.org/10.1038/nature09486.

(30)    Sagan, L. On the Origin of Mitosing Cells. J. Theor. Biol. 1967, 14 (3), 255–274. https://doi.org/10.1016/0022-5193(67)90079-3.

(31)    Kokoszka, J. E.; Waymire, K. G.; Levy, S. E.; Sligh, J. E.; Cai, J.; Jones, D. P.; MacGregor, G. R.; Wallace, D. C. The ADP/ATP Translocator Is Not Essential for the Mitochondrial Permeability Transition Pore. Nature 2004, 427 (6973), 461–465. https://doi.org/10.1038/nature02229.

(32)    Torralba, D.; Baixauli, F.; Sánchez-Madrid, F. Mitochondria Know No Boundaries: Mechanisms and Functions of Intercellular Mitochondrial Transfer. Front. Cell Dev. Biol. 2016, 4, 107. https://doi.org/10.3389/fcell.2016.00107.

(33)    Sonnenburg, J. L.; Bäckhed, F. Diet-Microbiota Interactions as Moderators of Human Metabolism. Nature 2016, 535 (7610), 56–64. https://doi.org/10.1038/nature18846.

(34)    Yang, B.; Ye, C.; Yan, B.; He, X.; Xing, K. Assessing the Influence of Dietary History on Gut Microbiota. Curr. Microbiol. 2019, 76 (2), 237–247. https://doi.org/10.1007/s00284-018-1616-8.

(35)    David, L. A.; Maurice, C. F.; Carmody, R. N.; Gootenberg, D. B.; Button, J. E.; Wolfe, B. E.; Ling, A. V.; Devlin, A. S.; Varma, Y.; Fischbach, M. A.; Biddinger, S. B.; Dutton, R. J.; Turnbaugh, P. J. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature 2014, 505 (7484), 559–563. https://doi.org/10.1038/nature12820.

(36)    Smits, S. A.; Leach, J.; Sonnenburg, E. D.; Gonzalez, C. G.; Lichtman, J. S.; Reid, G.; Knight, R.; Manjurano, A.; Changalucha, J.; Elias, J. E.; Dominguez-Bello, M. G.; Sonnenburg, J. L. Seasonal Cycling in the Gut Microbiome of the Hadza Hunter-Gatherers of Tanzania. Science 2017, 357 (6353), 802–806. https://doi.org/10.1126/science.aan4834.

(37)    Tremaroli, V.; Bäckhed, F. Tremaroli, V. & Backhed, F. Functional Interactions between the Gut Microbiota and Host Metabolism. Nature 489, 242-249; 2012; Vol. 489. https://doi.org/10.1038/nature11552.

(38)    Yong, E. Microbiology: Here’s Looking at You, Squid. Nat. News 2015, 517 (7534), 262. https://doi.org/10.1038/517262a.

(39)    Ponton, F.; Otálora-Luna, F.; Lefèvre, T.; Guerin, P. M.; Lebarbenchon, C.; Duneau, D.; Biron, D. G.; Thomas, F. Water-Seeking Behavior in Worm-Infected Crickets and Reversibility of Parasitic Manipulation. Behav. Ecol. 2011, 22 (2), 392–400. https://doi.org/10.1093/beheco/arq215.

(40)    Zilber-Rosenberg, I.; Rosenberg, E. Role of Microorganisms in the Evolution of Animals and Plants: The Hologenome Theory of Evolution. FEMS Microbiol. Rev. 2008, 32 (5), 723–735. https://doi.org/10.1111/j.1574-6976.2008.00123.x.

(41)    Rosenberg, E.; Zilber-Rosenberg, I. The Hologenome Concept of Evolution after 10 Years. Microbiome 2018, 6 (1), 78. https://doi.org/10.1186/s40168-018-0457-9.

(42)    Rosenberg, E.; Zilber-Rosenberg, I. The Hologenome Concept of Evolution: Do Mothers Matter Most? BJOG Int. J. Obstet. Gynaecol. 2020, 127 (2), 129–137. https://doi.org/10.1111/1471-0528.15882.

(43)    Collado, M. C.; Rautava, S.; Aakko, J.; Isolauri, E.; Salminen, S. Human Gut Colonisation May Be Initiated in Utero by Distinct Microbial Communities in the Placenta and Amniotic Fluid. Sci. Rep. 2016, 6 (1), 23129. https://doi.org/10.1038/srep23129.

(44)    Willyard, C. Could Baby’s First Bacteria Take Root before Birth? Nature 2018, 553 (7688), 264–266. https://doi.org/10.1038/d41586-018-00664-8.

(45)    Ferretti, P. and col. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host Microbe 2018, 24 (1), 133-145.e5. https://doi.org/10.1016/j.chom.2018.06.005.

(46)    Jašarević, E.; Bale, T. L. Prenatal and Postnatal Contributions of the Maternal Microbiome on Offspring Programming. Front. Neuroendocrinol. 2019, 55, 100797. https://doi.org/10.1016/j.yfrne.2019.100797.

(47)    Kimura, I. and col.  Maternal Gut Microbiota in Pregnancy Influences Offspring Metabolic Phenotype in Mice. Science 2020, 367 (6481). https://doi.org/10.1126/science.aaw8429.

(48)    Fehr, K.; Moossavi, S.; Sbihi, H.; Boutin, R. C. T.; Bode, L.; Robertson, B.; Yonemitsu, C.; Field, C. J.; Becker, A. B.; Mandhane, P. J.; Sears, M. R.; Khafipour, E.; Moraes, T. J.; Subbarao, P.; Finlay, B. B.; Turvey, S. E.; Azad, M. B. Breastmilk Feeding Practices Are Associated with the Co-Occurrence of Bacteria in Mothers’ Milk and the Infant Gut: The CHILD Cohort Study. Cell Host Microbe 2020, S1931312820303504. https://doi.org/10.1016/j.chom.2020.06.009.

(49)    Gonzalez, E.; Brereton, N. J. B.; Li, C.; Lopez Leyva, L.; Solomons, N. W.; Agellon, L. B.; Scott, M. E.; Koski, K. G. Distinct Changes Occur in the Human Breast Milk Microbiome Between Early and Established Lactation in Breastfeeding Guatemalan Mothers. Front. Microbiol. 2021, 12. https://doi.org/10.3389/fmicb.2021.557180.

(50)    Brune, A.; Dietrich, C. The Gut Microbiota of Termites: Digesting the Diversity in the Light of Ecology and Evolution. Annu. Rev. Microbiol. 2015, 69, 145–166. https://doi.org/10.1146/annurev-micro-092412-155715.

(51)    Osawa, R.; Blanshard, W.; Ocallaghan, P. Microbiological Studies of the Intestinal Microflora of the Koala, Phascolarctos-Cinereus .2. Pap, a Special Maternal Feces Consumed by Juvenile Koalas. Aust. J. Zool. – AUST J ZOOL 1993, 41. https://doi.org/10.1071/ZO9930611.

(52)    Berger, E.; Rath, E.; Yuan, D.; Waldschmitt, N.; Khaloian, S.; Allgäuer, M.; Staszewski, O.; Lobner, E. M.; Schöttl, T.; Giesbertz, P.; Coleman, O. I.; Prinz, M.; Weber, A.; Gerhard, M.; Klingenspor, M.; Janssen, K.-P.; Heikenwalder, M.; Haller, D. Mitochondrial Function Controls Intestinal Epithelial Stemness and Proliferation. Nat. Commun. 2016, 7 (1), 13171. https://doi.org/10.1038/ncomms13171.

(53)    Strifler, G.; Tuboly, E.; Szél, E.; Kaszonyi, E.; Cao, C.; Kaszaki, J.; Mészáros, A.; Boros, M.; Hartmann, P. Inhaled Methane Limits the Mitochondrial Electron Transport Chain Dysfunction during Experimental Liver Ischemia-Reperfusion Injury. PloS One 2016, 11 (1), e0146363. https://doi.org/10.1371/journal.pone.0146363.

(54)    Belizário, J. E.; Faintuch, J.; Garay-Malpartida, M. Gut Microbiome Dysbiosis and Immunometabolism: New Frontiers for Treatment of Metabolic Diseases. Mediators Inflamm. 2018, 2018, 2037838. https://doi.org/10.1155/2018/2037838.

(55)    Saint-Georges-Chaumet, Y.; Edeas, M. Microbiota-Mitochondria Inter-Talk: Consequence for Microbiota-Host Interaction. Pathog. Dis. 2016, 74 (1), ftv096. https://doi.org/10.1093/femspd/ftv096.

(56)    Han, B.; Lin, C.-C. J.; Hu, G.; Wang, M. C. ‘Inside Out’– a Dialogue between Mitochondria and Bacteria. FEBS J. 2019, 286 (4), 630–641. https://doi.org/10.1111/febs.14692.

(57)    Yardeni, T.; Tanes, C. E.; Bittinger, K.; Mattei, L. M.; Schaefer, P. M.; Singh, L. N.; Wu, G. D.; Murdock, D. G.; Wallace, D. C. Host Mitochondria Influence Gut Microbiome Diversity: A Role for ROS. Sci. Signal. 2019, 12 (588). https://doi.org/10.1126/scisignal.aaw3159.

(58)    Ballard, J. W. O.; Towarnicki, S. G. Mitochondria, the Gut Microbiome and ROS. Cell. Signal. 2020, 75, 109737. https://doi.org/10.1016/j.cellsig.2020.109737.

(59)    Duan, C.; Kuang, L.; Xiang, X.; Zhang, J.; Zhu, Y.; Wu, Y.; Yan, Q.; Liu, L.; Li, T. Activated Drp1-Mediated Mitochondrial ROS Influence the Gut Microbiome and Intestinal Barrier after Hemorrhagic Shock. Aging 2020, 12 (2), 1397–1416. https://doi.org/10.18632/aging.102690.

(60)    Ortega-Hernández, A.; Martínez-Martínez, E.; Gómez-Gordo, R.; López-Andrés, N.; Fernández-Celis, A.; Gutiérrrez-Miranda, B.; Nieto, M. L.; Alarcón, T.; Alba, C.; Gómez-Garre, D.; Cachofeiro, V. The Interaction between Mitochondrial Oxidative Stress and Gut Microbiota in the Cardiometabolic Consequences in Diet-Induced Obese Rats. Antioxid. Basel Switz. 2020, 9 (7), E640. https://doi.org/10.3390/antiox9070640.

(61)    Ma, J.; Coarfa, C.; Qin, X.; Bonnen, P. E.; Milosavljevic, A.; Versalovic, J.; Aagaard, K. MtDNA Haplogroup and Single Nucleotide Polymorphisms Structure Human Microbiome Communities. BMC Genomics 2014, 15 (1), 257. https://doi.org/10.1186/1471-2164-15-257.

(62)    Hirose, M.; Künstner, A.; Schilf, P.; Sünderhauf, A.; Rupp, J.; Jöhren, O.; Schwaninger, M.; Sina, C.; Baines, J. F.; Ibrahim, S. M. Mitochondrial Gene Polymorphism Is Associated with Gut Microbial Communities in Mice. Sci. Rep. 2017, 7 (1), 15293. https://doi.org/10.1038/s41598-017-15377-7.

(63)    Rose, S.; Bennuri, S. C.; Davis, J. E.; Wynne, R.; Slattery, J. C.; Tippett, M.; Delhey, L.; Melnyk, S.; Kahler, S. G.; MacFabe, D. F.; Frye, R. E. Butyrate Enhances Mitochondrial Function during Oxidative Stress in Cell Lines from Boys with Autism. Transl. Psychiatry 2018, 8 (1), 42. https://doi.org/10.1038/s41398-017-0089-z.

(64)    Hu, S.; Kuwabara, R.; de Haan, B. J.; Smink, A. M.; de Vos, P. Acetate and Butyrate Improve β-Cell Metabolism and Mitochondrial Respiration under Oxidative Stress. Int. J. Mol. Sci. 2020, 21 (4). https://doi.org/10.3390/ijms21041542.

(65)    Sinha, M. K.; Ohannesian, J. P.; Heiman, M. L.; Kriauciunas, A.; Stephens, T. W.; Magosin, S.; Marco, C.; Caro, J. F. Nocturnal Rise of Leptin in Lean, Obese, and Non-Insulin-Dependent Diabetes Mellitus Subjects. J. Clin. Invest. 1996, 97 (5), 1344–1347.

(66)    Van Cauter, E.; Polonsky, K. S.; Scheen, A. J. Roles of Circadian Rhythmicity and Sleep in Human Glucose Regulation. Endocr. Rev. 1997, 18 (5), 716–738. https://doi.org/10.1210/edrv.18.5.0317.

(67)    Dupuis, J. and col. New Genetic Loci Implicated in Fasting Glucose Homeostasis and Their Impact on Type 2 Diabetes Risk. Nat. Genet. 2010, 42 (2), 105–116. https://doi.org/10.1038/ng.520.

(68)    Sadacca, L. A.; Lamia, K. A.; deLemos, A. S.; Blum, B.; Weitz, C. J. An Intrinsic Circadian Clock of the Pancreas Is Required for Normal Insulin Release and Glucose Homeostasis in Mice. Diabetologia 2011, 54 (1), 120–124. https://doi.org/10.1007/s00125-010-1920-8.

(69)    Papakonstantinou, E.; Oikonomou, C.; Nychas, G.; Dimitriadis, G. D. Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance. Nutrients 2022, 14 (4), 823. https://doi.org/10.3390/nu14040823.

(70)    Pearce, K. L.; Noakes, M.; Keogh, J.; Clifton, P. M. Effect of Carbohydrate Distribution on Postprandial Glucose Peaks with the Use of Continuous Glucose Monitoring in Type 2 Diabetes. Am. J. Clin. Nutr. 2008, 87 (3), 638–644. https://doi.org/10.1093/ajcn/87.3.638.

(71)    Jakubowicz, D.; Barnea, M.; Wainstein, J.; Froy, O. High Caloric Intake at Breakfast vs. Dinner Differentially Influences Weight Loss of Overweight and Obese Women. Obes. Silver Spring Md 2013, 21 (12), 2504–2512. https://doi.org/10.1002/oby.20460.

(72)    Gill, S.; Panda, S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans That Can Be Modulated for Health Benefits. Cell Metab. 2015, 22 (5), 789–798. https://doi.org/10.1016/j.cmet.2015.09.005.

(73)    Bo, S.; Broglio, F.; Settanni, F.; Parasiliti Caprino, M.; Ianniello, A.; Mengozzi, G.; De Francesco, A.; Fadda, M.; Fedele, D.; Guggino, A.; Ghigo, E.; Maccario, M. Effects of Meal Timing on Changes in Circulating Epinephrine, Norepinephrine, and Acylated Ghrelin Concentrations: A Pilot Study. Nutr. Diabetes 2017, 7 (12), 303. https://doi.org/10.1038/s41387-017-0010-0.

(74)    Takahashi, M.; Ozaki, M.; Kang, M.-I.; Sasaki, H.; Fukazawa, M.; Iwakami, T.; Lim, P. J.; Kim, H.-K.; Aoyama, S.; Shibata, S. Effects of Meal Timing on Postprandial Glucose Metabolism and Blood Metabolites in Healthy Adults. Nutrients 2018, 10 (11), E1763. https://doi.org/10.3390/nu10111763.

(75)    Chen, H. J.; Chuang, S. Y.; Chang, H. Y.; Pan, W. H. Energy Intake at Different Times of the Day: Its Association with Elevated Total and LDL Cholesterol Levels. Nutr. Metab. Cardiovasc. Dis. NMCD 2019, 29 (4), 390–397. https://doi.org/10.1016/j.numecd.2019.01.003.

(76)    Morris, C. J.; Garcia, J. I.; Myers, S.; Yang, J. N.; Trienekens, N.; Scheer, F. A. J. L. The Human Circadian System Has a Dominating Role in Causing the Morning/Evening Difference in Diet-Induced Thermogenesis. Obes. Silver Spring Md 2015, 23 (10), 2053–2058. https://doi.org/10.1002/oby.21189.

(77)    Poggiogalle, E.; Jamshed, H.; Peterson, C. M. Circadian Regulation of Glucose, Lipid, and Energy Metabolism in Humans. Metabolism. 2018, 84, 11–27. https://doi.org/10.1016/j.metabol.2017.11.017.

(78)    Stenvers, D. J.; Scheer, F. A. J. L.; Schrauwen, P.; la Fleur, S. E.; Kalsbeek, A. Circadian Clocks and Insulin Resistance. Nat. Rev. Endocrinol. 2019, 15 (2), 75–89. https://doi.org/10.1038/s41574-018-0122-1.

(79)    Dibner, C.; Gachon, F. Circadian Dysfunction and Obesity: Is Leptin the Missing Link? Cell Metab. 2015, 22 (3), 359–360. https://doi.org/10.1016/j.cmet.2015.08.008.

(80)    Morris, C. J.; Purvis, T. E.; Hu, K.; Scheer, F. A. J. L. Circadian Misalignment Increases Cardiovascular Disease Risk Factors in Humans. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (10), E1402-1411. https://doi.org/10.1073/pnas.1516953113.

(81)    Qian, J.; Dalla Man, C.; Morris, C. J.; Cobelli, C.; Scheer, F. A. J. L. Differential Effects of the Circadian System and Circadian Misalignment on Insulin Sensitivity and Insulin Secretion in Humans. Diabetes Obes. Metab. 2018, 20 (10), 2481–2485. https://doi.org/10.1111/dom.13391.

(82)    Schuld, A.; Hebebrand, J.; Geller, F.; Pollmächer, T. Increased Body-Mass Index in Patients with Narcolepsy. Lancet Lond. Engl. 2000, 355 (9211), 1274–1275. https://doi.org/10.1016/S0140-6736(05)74704-8.

(83)    Colles, S. L.; Dixon, J. B.; O’Brien, P. E. Night Eating Syndrome and Nocturnal Snacking: Association with Obesity, Binge Eating and Psychological Distress. Int. J. Obes. 2005 2007, 31 (11), 1722–1730. https://doi.org/10.1038/sj.ijo.0803664.

(84)    Nedeltcheva, A. V.; Kilkus, J. M.; Imperial, J.; Schoeller, D. A.; Penev, P. D. Insufficient Sleep Undermines Dietary Efforts to Reduce Adiposity. Ann. Intern. Med. 2010, 153 (7), 435–441. https://doi.org/10.7326/0003-4819-153-7-201010050-00006.

(85)    Bonham, M. P.; Kaias, E.; Zimberg, I.; Leung, G. K. W.; Davis, R.; Sletten, T. L.; Windsor-Aubrey, H.; Huggins, C. E. Effect of Night Time Eating on Postprandial Triglyceride Metabolism in Healthy Adults: A Systematic Literature Review. J. Biol. Rhythms 2019, 34 (2), 119–130. https://doi.org/10.1177/0748730418824214.

(86)    van Kerkhof, L. W. M.; Van Dycke, K. C. G.; Jansen, E. H. J. M.; Beekhof, P. K.; van Oostrom, C. T. M.; Ruskovska, T.; Velickova, N.; Kamcev, N.; Pennings, J. L. A.; van Steeg, H.; Rodenburg, W. Diurnal Variation of Hormonal and Lipid Biomarkers in a Molecular Epidemiology-Like Setting. PloS One 2015, 10 (8), e0135652. https://doi.org/10.1371/journal.pone.0135652.

(87)    Chaix, A.; Lin, T.; Le, H. D.; Chang, M. W.; Panda, S. Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock. Cell Metab. 2019, 29 (2), 303-319.e4. https://doi.org/10.1016/j.cmet.2018.08.004.

(88)    Eckel-Mahan, K. L.; Patel, V. R.; de Mateo, S.; Orozco-Solis, R.; Ceglia, N. J.; Sahar, S.; Dilag-Penilla, S. A.; Dyar, K. A.; Baldi, P.; Sassone-Corsi, P. Reprogramming of the Circadian Clock by Nutritional Challenge. Cell 2013, 155 (7), 1464–1478. https://doi.org/10.1016/j.cell.2013.11.034.

(89)    Mi, Y.; Qi, G.; Gao, Y.; Li, R.; Wang, Y.; Li, X.; Huang, S.; Liu, X. (-)-Epigallocatechin-3-Gallate Ameliorates Insulin Resistance and Mitochondrial Dysfunction in HepG2 Cells: Involvement of Bmal1. Mol. Nutr. Food Res. 2017, 61 (12). https://doi.org/10.1002/mnfr.201700440.

(90)    Li, J.; Wei, L.; Zhao, C.; Li, J.; Liu, Z.; Zhang, M.; Wang, Y. Resveratrol Maintains Lipid Metabolism Homeostasis via One of the Mechanisms Associated with the Key Circadian Regulator Bmal1. Molecules 2019, 24 (16). https://doi.org/10.3390/molecules24162916.

(91)    Scrima, R.; Cela, O.; Merla, G.; Augello, B.; Rubino, R.; Quarato, G.; Fugetto, S.; Menga, M.; Fuhr, L.; Relógio, A.; Piccoli, C.; Mazzoccoli, G.; Capitanio, N. Clock-Genes and Mitochondrial Respiratory Activity: Evidence of a Reciprocal Interplay. Biochim. Biophys. Acta 2016, 1857 (8), 1344–1351. https://doi.org/10.1016/j.bbabio.2016.03.035.

(92)    de Goede, P.; Wefers, J.; Brombacher, E. C.; Schrauwen, P.; Kalsbeek, A. Circadian Rhythms in Mitochondrial Respiration. J. Mol. Endocrinol. 2018, 60 (3), R115–R130. https://doi.org/10.1530/JME-17-0196.

(93)    Gerhart-Hines, Z.; Feng, D.; Emmett, M. J.; Everett, L. J.; Loro, E.; Briggs, E. R.; Bugge, A.; Hou, C.; Ferrara, C.; Seale, P.; Pryma, D. A.; Khurana, T. S.; Lazar, M. A. The Nuclear Receptor Rev-Erbα Controls Circadian Thermogenic Plasticity. Nature 2013, 503 (7476), 410–413. https://doi.org/10.1038/nature12642.

(94)    Neufeld-Cohen, A.; Robles, M. S.; Aviram, R.; Manella, G.; Adamovich, Y.; Ladeuix, B.; Nir, D.; Rousso-Noori, L.; Kuperman, Y.; Golik, M.; Mann, M.; Asher, G. Circadian Control of Oscillations in Mitochondrial Rate-Limiting Enzymes and Nutrient Utilization by PERIOD Proteins. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (12), E1673-1682. https://doi.org/10.1073/pnas.1519650113.

(95)    Thaiss, C. A.; Zeevi, D.; Levy, M.; Zilberman-Schapira, G.; Suez, J.; Tengeler, A. C.; Abramson, L.; Katz, M. N.; Korem, T.; Zmora, N.; Kuperman, Y.; Biton, I.; Gilad, S.; Harmelin, A.; Shapiro, H.; Halpern, Z.; Segal, E.; Elinav, E. Transkingdom Control of Microbiota Diurnal Oscillations Promotes Metabolic Homeostasis. Cell 2014, 159 (3), 514–529. https://doi.org/10.1016/j.cell.2014.09.048.

(96)    Paulose, J. K.; Wright, J. M.; Patel, A. G.; Cassone, V. M. Human Gut Bacteria Are Sensitive to Melatonin and Express Endogenous Circadian Rhythmicity. PLoS ONE 2016, 11 (1). https://doi.org/10.1371/journal.pone.0146643.

(97)    Liang, X.; FitzGerald, G. A. Timing the Microbes: The Circadian Rhythm of the Gut Microbiome. J. Biol. Rhythms 2017, 32 (6), 505–515. https://doi.org/10.1177/0748730417729066.

(98)    Asher, G.; Sassone-Corsi, P. Time for Food: The Intimate Interplay between Nutrition, Metabolism, and the Circadian Clock. Cell 2015, 161 (1), 84–92. https://doi.org/10.1016/j.cell.2015.03.015.

(99)    Pearson, J. A.; Wong, F. S.; Wen, L. Crosstalk between Circadian Rhythms and the Microbiota. Immunology 2020, 161 (4), 278–290. https://doi.org/10.1111/imm.13278.

(100) Reitmeier, S.; Kiessling, S.; Clavel, T.; List, M.; Almeida, E. L.; Ghosh, T. S.; Neuhaus, K.; Grallert, H.; Linseisen, J.; Skurk, T.; Brandl, B.; Breuninger, T. A.; Troll, M.; Rathmann, W.; Linkohr, B.; Hauner, H.; Laudes, M.; Franke, A.; Le Roy, C. I.; Bell, J. T.; Spector, T.; Baumbach, J.; O’Toole, P. W.; Peters, A.; Haller, D. Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes. Cell Host Microbe 2020. https://doi.org/10.1016/j.chom.2020.06.004.

(101) Micha, R.; Rogers, P. J.; Nelson, M. Glycaemic Index and Glycaemic Load of Breakfast Predict Cognitive Function and Mood in School Children: A Randomised Controlled Trial. Br. J. Nutr. 2011, 106 (10), 1552–1561. https://doi.org/10.1017/S0007114511002303.

(102) Álvarez-Bueno, C.; Martínez-Vizcaíno, V.; López, E. J.; Visier-Alfonso, M. E.; Redondo-Tébar, A.; Cavero-Redondo, I. Comparative Effect of Low-Glycemic Index versus High-Glycemic Index Breakfasts on Cognitive Function: A Systematic Review and Meta-Analysis. Nutrients 2019, 11 (8). https://doi.org/10.3390/nu11081706.

(103) Oike, H.; Nagai, K.; Fukushima, T.; Ishida, N.; Kobori, M. High-Salt Diet Advances Molecular Circadian Rhythms in Mouse Peripheral Tissues. Biochem. Biophys. Res. Commun. 2010, 402 (1), 7–13. https://doi.org/10.1016/j.bbrc.2010.09.072.

(104) Bellet, M. M.; Deriu, E.; Liu, J. Z.; Grimaldi, B.; Blaschitz, C.; Zeller, M.; Edwards, R. A.; Sahar, S.; Dandekar, S.; Baldi, P.; George, M. D.; Raffatellu, M.; Sassone-Corsi, P. Circadian Clock Regulates the Host Response to Salmonella. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (24), 9897–9902. https://doi.org/10.1073/pnas.1120636110.

(105) Oliva-Ramírez, J.; Moreno-Altamirano, M. M. B.; Pineda-Olvera, B.; Cauich-Sánchez, P.; Sánchez-García, F. J. Crosstalk between Circadian Rhythmicity, Mitochondrial Dynamics and Macrophage Bactericidal Activity. Immunology 2014, 143 (3), 490–497. https://doi.org/10.1111/imm.12329.

(106) Zhuang, X.; Rambhatla, S. B.; Lai, A. G.; McKeating, J. A. Interplay between Circadian Clock and Viral Infection. J. Mol. Med. Berl. Ger. 2017, 95 (12), 1283–1289. https://doi.org/10.1007/s00109-017-1592-7.

(107) Paganelli, R.; Petrarca, C.; Di Gioacchino, M. Biological Clocks: Their Relevance to Immune-Allergic Diseases. Clin. Mol. Allergy 2018, 16 (1), 1. https://doi.org/10.1186/s12948-018-0080-0.

(108) Gibbs, J. E.; Ray, D. W. The Role of the Circadian Clock in Rheumatoid Arthritis. Arthritis Res. Ther. 2013, 15 (1), 205. https://doi.org/10.1186/ar4146.

(109) Nakao, A.; Nakamura, Y.; Shibata, S. The Circadian Clock Functions as a Potent Regulator of Allergic Reaction. Allergy 2015, 70 (5), 467–473. https://doi.org/10.1111/all.12596.

(110) Sutherland, E. R. Nocturnal Asthma. J. Allergy Clin. Immunol. 2005, 116 (6), 1179–1186; quiz 1187. https://doi.org/10.1016/j.jaci.2005.09.028.

(111) Durrington, H. J.; Farrow, S. N.; Loudon, A. S.; Ray, D. W. The Circadian Clock and Asthma. Thorax 2014, 69 (1), 90–92. https://doi.org/10.1136/thoraxjnl-2013-203482.

(112) Shackelford, P. G.; Feigin, R. D. Periodicity of Susceptibility to Pneumococcal Infection: Influence of Light and Adrenocortical Secretions. Science 1973, 182 (4109), 285–287. https://doi.org/10.1126/science.182.4109.285.

(113) Heipertz, E. L.; Harper, J.; Lopez, C. A.; Fikrig, E.; Hughes, M. E.; Walker, W. E. Circadian Rhythms Influence the Severity of Sepsis in Mice via a TLR2-Dependent, Leukocyte-Intrinsic Mechanism. J. Immunol. Baltim. Md 1950 2018, 201 (1), 193–201. https://doi.org/10.4049/jimmunol.1701677.

(114) Scheiermann, C.; Gibbs, J.; Ince, L.; Loudon, A. Clocking in to Immunity. Nat. Rev. Immunol. 2018, 18 (7), 423–437. https://doi.org/10.1038/s41577-018-0008-4.

(115) Goto, Y.; Nonaka, I.; Horai, S. A Mutation in the TRNA(Leu)(UUR) Gene Associated with the MELAS Subgroup of Mitochondrial Encephalomyopathies. Nature 1990, 348 (6302), 651–653. https://doi.org/10.1038/348651a0.

(116) Huoponen, K.; Vilkki, J.; Aula, P.; Nikoskelainen, E. K.; Savontaus, M. L. A New MtDNA Mutation Associated with Leber Hereditary Optic Neuroretinopathy. Am. J. Hum. Genet. 1991, 48 (6), 1147–1153.

(117) van den Ouweland, J. M.; Lemkes, H. H.; Trembath, R. C.; Ross, R.; Velho, G.; Cohen, D.; Froguel, P.; Maassen, J. A. Maternally Inherited Diabetes and Deafness Is a Distinct Subtype of Diabetes and Associates with a Single Point Mutation in the Mitochondrial TRNA(Leu(UUR)) Gene. Diabetes 1994, 43 (6), 746–751. https://doi.org/10.2337/diab.43.6.746.

(118) Trounce, I.; Neill, S.; Wallace, D. C. Cytoplasmic Transfer of the MtDNA Nt 8993 T–>G (ATP6) Point Mutation Associated with Leigh Syndrome into MtDNA-Less Cells Demonstrates Cosegregation with a Decrease in State III Respiration and ADP/O Ratio. Proc. Natl. Acad. Sci. U. S. A. 1994, 91 (18), 8334–8338. https://doi.org/10.1073/pnas.91.18.8334.

(119) Jørgensen, M. E.; Bjerregaard, P.; Gyntelberg, F.; Borch‐Johnsen, K. Prevalence of the Metabolic Syndrome among the Inuit in Greenland. A Comparison between Two Proposed Definitions. Diabet. Med. 2004, 21 (11), 1237–1242. https://doi.org/10.1111/j.1464-5491.2004.01294.x.

(120) Château-Degat, M.-L.; Dewailly, E.; Charbonneau, G.; Laouan-Sidi, E. A.; Tremblay, A.; Egeland, G. M. Obesity Risks: Towards an Emerging Inuit Pattern. Int. J. Circumpolar Health 2011, 70 (2), 166–177. https://doi.org/10.3402/ijch.v70i2.17802.

(121) Sheikh, N.; Egeland, G. M.; Johnson-Down, L.; Kuhnlein, H. V. Changing Dietary Patterns and Body Mass Index over Time in Canadian Inuit Communities. Int. J. Circumpolar Health 2011, 70 (5), 511–519. https://doi.org/10.3402/ijch.v70i5.17863.

(122) Clemente, F. J.; Cardona, A.; Inchley, C. E.; Peter, B. M.; Jacobs, G.; Pagani, L.; Lawson, D. J.; Antão, T.; Vicente, M.; Mitt, M.; DeGiorgio, M.; Faltyskova, Z.; Xue, Y.; Ayub, Q.; Szpak, M.; Mägi, R.; Eriksson, A.; Manica, A.; Raghavan, M.; Rasmussen, M.; Rasmussen, S.; Willerslev, E.; Vidal-Puig, A.; Tyler-Smith, C.; Villems, R.; Nielsen, R.; Metspalu, M.; Malyarchuk, B.; Derenko, M.; Kivisild, T. A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations. Am. J. Hum. Genet. 2014, 95 (5), 584–589. https://doi.org/10.1016/j.ajhg.2014.09.016.

(123) Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96 (1), 365–408. https://doi.org/10.1152/physrev.00014.2015.

(124) Consiglio, M.; Destefanis, M.; Morena, D.; Foglizzo, V.; Forneris, M.; Pescarmona, G.; Silvagno, F. The Vitamin D Receptor Inhibits the Respiratory Chain, Contributing to the Metabolic Switch That Is Essential for Cancer Cell Proliferation. PLOS ONE 2014, 9 (12), e115816. https://doi.org/10.1371/journal.pone.0115816.

(125) Ryan, Z. C.; Craig, T. A.; Folmes, C. D.; Wang, X.; Lanza, I. R.; Schaible, N. S.; Salisbury, J. L.; Nair, K. S.; Terzic, A.; Sieck, G. C.; Kumar, R. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells*. J. Biol. Chem. 2016, 291 (3), 1514–1528. https://doi.org/10.1074/jbc.M115.684399.

(126) Ricciardi, C. J.; Bae, J.; Esposito, D.; Komarnytsky, S.; Hu, P.; Chen, J.; Zhao, L. 1,25-Dihydroxyvitamin D3/Vitamin D Receptor Suppresses Brown Adipocyte Differentiation and Mitochondrial Respiration. Eur. J. Nutr. 2015, 54 (6), 1001–1012. https://doi.org/10.1007/s00394-014-0778-9.

(127) Larrick, B. M.; Kim, K.-H.; Donkin, S. S.; Teegarden, D. 1,25-Dihydroxyvitamin D Regulates Lipid Metabolism and Glucose Utilization in Differentiated 3T3-L1 Adipocytes. Nutr. Res. N. Y. N 2018, 58, 72–83. https://doi.org/10.1016/j.nutres.2018.07.004.

(128) Wimalawansa, S. J. Associations of Vitamin D with Insulin Resistance, Obesity, Type 2 Diabetes, and Metabolic Syndrome. J. Steroid Biochem. Mol. Biol. 2018, 175, 177–189. https://doi.org/10.1016/j.jsbmb.2016.09.017.

(129) Lerchbaum, E.; Trummer, C.; Theiler-Schwetz, V.; Kollmann, M.; Wölfler, M.; Pilz, S.; Obermayer-Pietsch, B. Effects of Vitamin D Supplementation on Body Composition and Metabolic Risk Factors in Men: A Randomized Controlled Trial. Nutrients 2019, 11 (8), 1894. https://doi.org/10.3390/nu11081894.

(130) Szymczak-Pajor, I.; Drzewoski, J.; Śliwińska, A. The Molecular Mechanisms by Which Vitamin D Prevents Insulin Resistance and Associated Disorders. Int. J. Mol. Sci. 2020, 21 (18), 6644. https://doi.org/10.3390/ijms21186644.

(131) Jones, K. S.; Redmond, J.; Fulford, A. J.; Jarjou, L.; Zhou, B.; Prentice, A.; Schoenmakers, I. Diurnal Rhythms of Vitamin D Binding Protein and Total and Free Vitamin D Metabolites. J. Steroid Biochem. Mol. Biol. 2017, 172, 130–135. https://doi.org/10.1016/j.jsbmb.2017.07.015.

(132) Hanel, A.; Carlberg, C. Vitamin D and Evolution: Pharmacologic Implications. Biochem. Pharmacol. 2020, 173, 113595. https://doi.org/10.1016/j.bcp.2019.07.024.

(133) Kuan, V.; Martineau, A. R.; Griffiths, C. J.; Hyppönen, E.; Walton, R. DHCR7 Mutations Linked to Higher Vitamin D Status Allowed Early Human Migration to Northern Latitudes. BMC Evol. Biol. 2013, 13, 144. https://doi.org/10.1186/1471-2148-13-144.

(134) Calton, E. K.; Keane, K. N.; Raizel, R.; Rowlands, J.; Soares, M. J.; Newsholme, P. Winter to Summer Change in Vitamin D Status Reduces Systemic Inflammation and Bioenergetic Activity of Human Peripheral Blood Mononuclear Cells. Redox Biol. 2017, 12, 814–820. https://doi.org/10.1016/j.redox.2017.04.009.

(135) Wilde, S.; Timpson, A.; Kirsanow, K.; Kaiser, E.; Kayser, M.; Unterländer, M.; Hollfelder, N.; Potekhina, I. D.; Schier, W.; Thomas, M. G.; Burger, J. Direct Evidence for Positive Selection of Skin, Hair, and Eye Pigmentation in Europeans during the Last 5,000 y. Proc. Natl. Acad. Sci. 2014, 111 (13), 4832–4837. https://doi.org/10.1073/pnas.1316513111.

(136) Marciniak, S.; Perry, G. H. Harnessing Ancient Genomes to Study the History of Human Adaptation. Nat. Rev. Genet. 2017, 18 (11), 659–674. https://doi.org/10.1038/nrg.2017.65.

(137) Sherman, H.; Genzer, Y.; Cohen, R.; Chapnik, N.; Madar, Z.; Froy, O. Timed High-Fat Diet Resets Circadian Metabolism and Prevents Obesity. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2012, 26 (8), 3493–3502. https://doi.org/10.1096/fj.12-208868.

(138) Sutton, E. F.; Beyl, R.; Early, K. S.; Cefalu, W. T.; Ravussin, E.; Peterson, C. M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018, 27 (6), 1212-1221.e3. https://doi.org/10.1016/j.cmet.2018.04.010.

(139) Cho, Y.; Hong, N.; Kim, K.; Cho, S. joon; Lee, M.; Lee, Y.; Lee, Y.; Kang, E. S.; Cha, B.-S.; Lee, B.-W. The Effectiveness of Intermittent Fasting to Reduce Body Mass Index and Glucose Metabolism: A Systematic Review and Meta-Analysis. J. Clin. Med. 2019, 8 (10), 1645. https://doi.org/10.3390/jcm8101645.

(140) Templeman, I.; Gonzalez, J. T.; Thompson, D.; Betts, J. A. The Role of Intermittent Fasting and Meal Timing in Weight Management and Metabolic Health. Proc. Nutr. Soc. 2020, 79 (1), 76–87. https://doi.org/10.1017/S0029665119000636.

(141) Albosta, M.; Bakke, J. Intermittent Fasting: Is There a Role in the Treatment of Diabetes? A Review of the Literature and Guide for Primary Care Physicians. Clin. Diabetes Endocrinol. 2021, 7 (1), 3. https://doi.org/10.1186/s40842-020-00116-1.

(142) Wilkinson, M. J.; Manoogian, E. N. C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J. G.; Navlakha, S.; Panda, S.; Taub, P. R. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020, 31 (1), 92-104.e5. https://doi.org/10.1016/j.cmet.2019.11.004.

(143) Pellegrini, M.; Cioffi, I.; Evangelista, A.; Ponzo, V.; Goitre, I.; Ciccone, G.; Ghigo, E.; Bo, S. Effects of Time-Restricted Feeding on Body Weight and Metabolism. A Systematic Review and Meta-Analysis. Rev. Endocr. Metab. Disord. 2020, 21 (1), 17–33. https://doi.org/10.1007/s11154-019-09524-w.

(144) Adafer, R.; Messaadi, W.; Meddahi, M.; Patey, A.; Haderbache, A.; Bayen, S.; Messaadi, N. Food Timing, Circadian Rhythm and Chrononutrition: A Systematic Review of Time-Restricted Eating’s Effects on Human Health. Nutrients 2020, 12 (12). https://doi.org/10.3390/nu12123770.

(145) Jamshed, H.; Beyl, R. A.; Della Manna, D. L.; Yang, E. S.; Ravussin, E.; Peterson, C. M. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients 2019, 11 (6). https://doi.org/10.3390/nu11061234.

(146) Ravussin, E.; Beyl, R. A.; Poggiogalle, E.; Hsia, D. S.; Peterson, C. M. Early Time-Restricted Feeding Reduces Appetite and Increases Fat Oxidation But Does Not Affect Energy Expenditure in Humans. Obes. Silver Spring Md 2019, 27 (8), 1244–1254. https://doi.org/10.1002/oby.22518.

(147) Hutchison, A. T.; Regmi, P.; Manoogian, E. N. C.; Fleischer, J. G.; Wittert, G. A.; Panda, S.; Heilbronn, L. K. Time-Restricted Feeding Improves Glucose Tolerance in Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obes. Silver Spring Md 2019, 27 (5), 724–732. https://doi.org/10.1002/oby.22449.

(148) Parr, E. B.; Devlin, B. L.; Radford, B. E.; Hawley, J. A. A Delayed Morning and Earlier Evening Time-Restricted Feeding Protocol for Improving Glycemic Control and Dietary Adherence in Men with Overweight/Obesity: A Randomized Controlled Trial. Nutrients 2020, 12 (2). https://doi.org/10.3390/nu12020505.

(149) Jones, R.; Pabla, P.; Mallinson, J.; Nixon, A.; Taylor, T.; Bennett, A.; Tsintzas, K. Two Weeks of Early Time-Restricted Feeding (ETRF) Improves Skeletal Muscle Insulin and Anabolic Sensitivity in Healthy Men. Am. J. Clin. Nutr. 2020, 112 (4), 1015–1028. https://doi.org/10.1093/ajcn/nqaa192.

(150) Scheer, F. A. J. L.; Morris, C. J.; Shea, S. A. The Internal Circadian Clock Increases Hunger and Appetite in the Evening Independent of Food Intake and Other Behaviors. Obes. Silver Spring Md 2013, 21 (3), 421–423. https://doi.org/10.1002/oby.20351.

(151) Sargent, C.; Zhou, X.; Matthews, R. W.; Darwent, D.; Roach, G. D. Daily Rhythms of Hunger and Satiety in Healthy Men during One Week of Sleep Restriction and Circadian Misalignment. Int. J. Environ. Res. Public. Health 2016, 13 (2), 170. https://doi.org/10.3390/ijerph13020170.

(152) Chowdhury, R.; Kunutsor, S.; Vitezova, A.; Oliver-Williams, C.; Chowdhury, S.; Kiefte-de-Jong, J. C.; Khan, H.; Baena, C. P.; Prabhakaran, D.; Hoshen, M. B.; Feldman, B. S.; Pan, A.; Johnson, L.; Crowe, F.; Hu, F. B.; Franco, O. H. Vitamin D and Risk of Cause Specific Death: Systematic Review and Meta-Analysis of Observational Cohort and Randomised Intervention Studies. BMJ 2014, 348, g1903. https://doi.org/10.1136/bmj.g1903.

(153) Gaksch, M. and col. Vitamin D and Mortality: Individual Participant Data Meta-Analysis of Standardized 25-Hydroxyvitamin D in 26916 Individuals from a European Consortium. PloS One 2017, 12 (2), e0170791. https://doi.org/10.1371/journal.pone.0170791.

(154) Keum, N.; Lee, D. H.; Greenwood, D. C.; Manson, J. E.; Giovannucci, E. Vitamin D Supplementation and Total Cancer Incidence and Mortality: A Meta-Analysis of Randomized Controlled Trials. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30 (5), 733–743. https://doi.org/10.1093/annonc/mdz059.

(155) Bizzaro, G.; Antico, A.; Fortunato, A.; Bizzaro, N. Vitamin D and Autoimmune Diseases: Is Vitamin D Receptor (VDR) Polymorphism the Culprit? Isr. Med. Assoc. J. IMAJ 2017, 19 (7), 438–443.

(156) Zdrenghea, M. T.; Makrinioti, H.; Bagacean, C.; Bush, A.; Johnston, S. L.; Stanciu, L. A. Vitamin D Modulation of Innate Immune Responses to Respiratory Viral Infections. Rev. Med. Virol. 2017, 27 (1). https://doi.org/10.1002/rmv.1909.

(157) Li, X.; Liu, Y.; Zheng, Y.; Wang, P.; Zhang, Y. The Effect of Vitamin D Supplementation on Glycemic Control in Type 2 Diabetes Patients: A Systematic Review and Meta-Analysis. Nutrients 2018, 10 (3), E375. https://doi.org/10.3390/nu10030375.

(158) Chai, B.; Gao, F.; Wu, R.; Dong, T.; Gu, C.; Lin, Q.; Zhang, Y. Vitamin D Deficiency as a Risk Factor for Dementia and Alzheimer’s Disease: An Updated Meta-Analysis. BMC Neurol. 2019, 19 (1), 284. https://doi.org/10.1186/s12883-019-1500-6.

(159) Lv, L.; Tan, X.; Peng, X.; Bai, R.; Xiao, Q.; Zou, T.; Tan, J.; Zhang, H.; Wang, C. The Relationships of Vitamin D, Vitamin D Receptor Gene Polymorphisms, and Vitamin D Supplementation with Parkinson’s Disease. Transl. Neurodegener. 2020, 9 (1), 34. https://doi.org/10.1186/s40035-020-00213-2.

(160) Martens, P.-J.; Gysemans, C.; Verstuyf, A.; Mathieu, C. Vitamin D’s Effect on Immune Function. Nutrients 2020, 12 (5), 1248. https://doi.org/10.3390/nu12051248.

(161) Mercola, J.; Grant, W. B.; Wagner, C. L. Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity. Nutrients 2020, 12 (11). https://doi.org/10.3390/nu12113361.

(162) Pereira, M.; Dantas Damascena, A.; Galvão Azevedo, L. M.; de Almeida Oliveira, T.; da Mota Santana, J. Vitamin D Deficiency Aggravates COVID-19: Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2020, 1–9. https://doi.org/10.1080/10408398.2020.1841090.

(163) Mariani, J.; Giménez, V. M. M.; Bergam, I.; Tajer, C.; Antonietti, L.; Inserra, F.; Ferder, L.; Manucha, W. Association Between Vitamin D Deficiency and COVID-19 Incidence, Complications, and Mortality in 46 Countries: An Ecological Study. Health Secur. 2020. https://doi.org/10.1089/hs.2020.0137.

(164) Szarpak, L.; Rafique, Z.; Gasecka, A.; Chirico, F.; Gawel, W.; Hernik, J.; Kaminska, H.; Filipiak, K. J.; Jaguszewski, M. J.; Szarpak, L. A Systematic Review and Meta-Analysis of Effect of Vitamin D Levels on the Incidence of COVID-19. Cardiol. J. 2021, 28 (5), 647–654. https://doi.org/10.5603/CJ.a2021.0072.

(165) Chirumbolo, S.; Bjørklund, G.; Sboarina, A.; Vella, A. The Role of Vitamin D in the Immune System as a Pro-Survival Molecule. Clin. Ther. 2017, 39 (5), 894–916. https://doi.org/10.1016/j.clinthera.2017.03.021.

(166) Caccamo, D.; Ricca, S.; Currò, M.; Ientile, R. Health Risks of Hypovitaminosis D: A Review of New Molecular Insights. Int. J. Mol. Sci. 2018, 19 (3), 892. https://doi.org/10.3390/ijms19030892.

(167) Bora, S. A.; Kennett, M. J.; Smith, P. B.; Patterson, A. D.; Cantorna, M. T. The Gut Microbiota Regulates Endocrine Vitamin D Metabolism through Fibroblast Growth Factor 23. Front. Immunol. 2018, 9, 408. https://doi.org/10.3389/fimmu.2018.00408.

(168) Chatterjee, I.; Lu, R.; Zhang, Y.; Zhang, J.; Dai, Y.; Xia, Y.; Sun, J. Vitamin D Receptor Promotes Healthy Microbial Metabolites and Microbiome. Sci. Rep. 2020, 10 (1), 7340. https://doi.org/10.1038/s41598-020-64226-7.

(169) Jin, D.; Wu, S.; Zhang, Y.-G.; Lu, R.; Xia, Y.; Dong, H.; Sun, J. Lack of Vitamin D Receptor Causes Dysbiosis and Changes the Functions of the Murine Intestinal Microbiome. Clin. Ther. 2015, 37 (5), 996-1009.e7. https://doi.org/10.1016/j.clinthera.2015.04.004.

(170) Kanhere, M.; He, J.; Chassaing, B.; Ziegler, T. R.; Alvarez, J. A.; Ivie, E. A.; Hao, L.; Hanfelt, J.; Gewirtz, A. T.; Tangpricha, V. Bolus Weekly Vitamin D3 Supplementation Impacts Gut and Airway Microbiota in Adults With Cystic Fibrosis: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. J. Clin. Endocrinol. Metab. 2018, 103 (2), 564–574. https://doi.org/10.1210/jc.2017-01983.

(171) Powe, C. E.; Evans, M. K.; Wenger, J.; Zonderman, A. B.; Berg, A. H.; Nalls, M.; Tamez, H.; Zhang, D.; Bhan, I.; Karumanchi, S. A.; Powe, N. R.; Thadhani, R. Vitamin D-Binding Protein and Vitamin D Status of Black Americans and White Americans. N. Engl. J. Med. 2013, 369 (21), 1991–2000. https://doi.org/10.1056/NEJMoa1306357.

(172) Kılıç, S.; Sılan, F.; Hız, M. M.; Işık, S.; Ögretmen, Z.; Özdemir, Ö. Vitamin D Receptor Gene BSMI, FOKI, APAI, and TAQI Polymorphisms and the Risk of Atopic Dermatitis. J. Investig. Allergol. Clin. Immunol. 2016, 26 (2), 106–110. https://doi.org/10.18176/jiaci.0020.

(173) Kizildag, S.; Dedemoglu, F.; Anik, A.; Catli, G.; Kizildag, S.; Abaci, A.; Makay, B.; Bober, E.; Unsal, E. Association Between Vitamin D Receptor Polymorphism and Familial Mediterranean Fever Disease in Turkish Children. Biochem. Genet. 2016, 54 (2), 169–176. https://doi.org/10.1007/s10528-015-9710-0.

(174) Lang, P. O.; Aspinall, R. Vitamin D Status and the Host Resistance to Infections: What It Is Currently (Not) Understood. Clin. Ther. 2017, 39 (5), 930–945. https://doi.org/10.1016/j.clinthera.2017.04.004.

(175) Tiosano, D.; Audi, L.; Climer, S.; Zhang, W.; Templeton, A. R.; Fernández-Cancio, M.; Gershoni-Baruch, R.; Sánchez-Muro, J. M.; El Kholy, M.; Hochberg, Z. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes. G3 Bethesda Md 2016, 6 (5), 1251–1266. https://doi.org/10.1534/g3.115.026773.

(176) Abouzid, M.; Karazniewicz-Lada, M.; Glowka, F. Genetic Determinants of Vitamin D-Related Disorders; Focus on Vitamin D Receptor. Curr. Drug Metab. 2018, 19 (12), 1042–1052. https://doi.org/10.2174/1389200219666180723143552.

(177) Ruiz-Ballesteros, A. I.; Meza-Meza, M. R.; Vizmanos-Lamotte, B.; Parra-Rojas, I.; de la Cruz-Mosso, U. Association of Vitamin D Metabolism Gene Polymorphisms with Autoimmunity: Evidence in Population Genetic Studies. Int. J. Mol. Sci. 2020, 21 (24), E9626. https://doi.org/10.3390/ijms21249626.

(178) Hanel, A.; Carlberg, C. Skin Colour and Vitamin D: An Update. Exp. Dermatol. 2020, 29 (9), 864–875. https://doi.org/10.1111/exd.14142.

(179) Hu, Z.; Tao, S.; Liu, H.; Pan, G.; Li, B.; Zhang, Z. The Association between Polymorphisms of Vitamin D Metabolic-Related Genes and Vitamin D3 Supplementation in Type 2 Diabetic Patients. J. Diabetes Res. 2019, 2019, 8289741. https://doi.org/10.1155/2019/8289741.

(180) Klahold, E.; Penna-Martinez, M.; Bruns, F.; Seidl, C.; Wicker, S.; Badenhoop, K. Vitamin D in Type 2 Diabetes: Genetic Susceptibility and the Response to Supplementation. Horm. Metab. Res. Horm. Stoffwechselforschung Horm. Metab. 2020, 52 (7), 492–499. https://doi.org/10.1055/a-1157-0026.

(181) Skoglund, P.; Mathieson, I. Ancient Genomics of Modern Humans: The First Decade. Annu. Rev. Genomics Hum. Genet. 2018, 19, 381–404. https://doi.org/10.1146/annurev-genom-083117-021749.

(182) Jablonski, N. G.; Chaplin, G. The Evolution of Human Skin Coloration. J. Hum. Evol. 2000, 39 (1), 57–106. https://doi.org/10.1006/jhev.2000.0403.

(183) Bogh, M. K. B.; Schmedes, A. V.; Philipsen, P. A.; Thieden, E.; Wulf, H. C. Vitamin D Production after UVB Exposure Depends on Baseline Vitamin D and Total Cholesterol but Not on Skin Pigmentation. J. Invest. Dermatol. 2010, 130 (2), 546–553. https://doi.org/10.1038/jid.2009.323.

(184) Young, A. R.; Morgan, K. A.; Harrison, G. I.; Lawrence, K. P.; Petersen, B.; Wulf, H. C.; Philipsen, P. A. A Revised Action Spectrum for Vitamin D Synthesis by Suberythemal UV Radiation Exposure in Humans in Vivo. Proc. Natl. Acad. Sci. U. S. A. 2021, 118 (40). https://doi.org/10.1073/pnas.2015867118.

(185) Tan, D.-X.; Manchester, L. C.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R. J. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Mol. Basel Switz. 2015, 20 (10), 18886–18906. https://doi.org/10.3390/molecules201018886.

(186) Galano, A.; Tan, D.-X.; Reiter, R. J. Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules 2018, 23 (3), 530. https://doi.org/10.3390/molecules23030530.

(187) Luo, G.; Ono, S.; Beukes, N. J.; Wang, D. T.; Xie, S.; Summons, R. E. Rapid Oxygenation of Earth’s Atmosphere 2.33 Billion Years Ago. Sci. Adv. 2016, 2 (5), e1600134. https://doi.org/10.1126/sciadv.1600134.

(188) Tan, D.-X.; Zheng, X.; Kong, J.; Manchester, L. C.; Hardeland, R.; Kim, S. J.; Xu, X.; Reiter, R. J. Fundamental Issues Related to the Origin of Melatonin and Melatonin Isomers during Evolution: Relation to Their Biological Functions. Int. J. Mol. Sci. 2014, 15 (9), 15858–15890. https://doi.org/10.3390/ijms150915858.

(189) Manchester, L. C.; Coto-Montes, A.; Boga, J. A.; Andersen, L. P. H.; Zhou, Z.; Galano, A.; Vriend, J.; Tan, D.-X.; Reiter, R. J. Melatonin: An Ancient Molecule That Makes Oxygen Metabolically Tolerable. J. Pineal Res. 2015, 59 (4), 403–419. https://doi.org/10.1111/jpi.12267.

(190) Zhao, D.; Yu, Y.; Shen, Y.; Liu, Q.; Zhao, Z.; Sharma, R.; Reiter, R. J. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front. Endocrinol. 2019, 10, 249. https://doi.org/10.3389/fendo.2019.00249.

(191) Vass, I. Molecular Mechanisms of Photodamage in the Photosystem II Complex. Biochim. Biophys. Acta 2012, 1817 (1), 209–217. https://doi.org/10.1016/j.bbabio.2011.04.014.

(192) Stehle, J. H.; Saade, A.; Rawashdeh, O.; Ackermann, K.; Jilg, A.; Sebestény, T.; Maronde, E. A Survey of Molecular Details in the Human Pineal Gland in the Light of Phylogeny, Structure, Function and Chronobiological Diseases. J. Pineal Res. 2011, 51 (1), 17–43. https://doi.org/10.1111/j.1600-079X.2011.00856.x.

(193) Venegas, C.; García, J. A.; Escames, G.; Ortiz, F.; López, A.; Doerrier, C.; García-Corzo, L.; López, L. C.; Reiter, R. J.; Acuña-Castroviejo, D. Extrapineal Melatonin: Analysis of Its Subcellular Distribution and Daily Fluctuations. J. Pineal Res. 2012, 52 (2), 217–227. https://doi.org/10.1111/j.1600-079X.2011.00931.x.

(194) Reiter, R. J.; Sharma, R.; Ma, Q. Switching Diseased Cells from Cytosolic Aerobic Glycolysis to Mitochondrial Oxidative Phosphorylation: A Metabolic Rhythm Regulated by Melatonin? J. Pineal Res. 2021, 70 (1), e12677. https://doi.org/10.1111/jpi.12677.

(195) Reiter, R. J.; Rosales-Corral, S.; Coto-Montes, A.; Boga, J. A.; Tan, D.-X.; Davis, J. M.; Konturek, P. C.; Konturek, S. J.; Brzozowski, T. The Photoperiod, Circadian Regulation and Chronodisruption: The Requisite Interplay between the Suprachiasmatic Nuclei and the Pineal and Gut Melatonin. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2011, 62 (3), 269–274.

(196) Konturek, P. C.; Brzozowski, T.; Konturek, S. J. Gut Clock: Implication of Circadian Rhythms in the Gastrointestinal Tract. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2011, 62 (2), 139–150.

(197) Yin, J.; Li, Y.; Han, H.; Chen, S.; Gao, J.; Liu, G.; Wu, X.; Deng, J.; Yu, Q.; Huang, X.; Fang, R.; Li, T.; Reiter, R. J.; Zhang, D.; Zhu, C.; Zhu, G.; Ren, W.; Yin, Y. Melatonin Reprogramming of Gut Microbiota Improves Lipid Dysmetabolism in High-Fat Diet-Fed Mice. J. Pineal Res. 2018, 65 (4), e12524. https://doi.org/10.1111/jpi.12524.

(198) Golan, D.; Staun-Ram, E.; Glass-Marmor, L.; Lavi, I.; Rozenberg, O.; Dishon, S.; Barak, M.; Ish-Shalom, S.; Miller, A. The Influence of Vitamin D Supplementation on Melatonin Status in Patients with Multiple Sclerosis. Brain. Behav. Immun. 2013, 32, 180–185. https://doi.org/10.1016/j.bbi.2013.04.010.

(199) da Silveira Cruz-Machado, S.; Tamura, E. K.; Carvalho-Sousa, C. E.; Rocha, V. A.; Pinato, L.; Fernandes, P. A. C.; Markus, R. P. Daily Corticosterone Rhythm Modulates Pineal Function through NFκB-Related Gene Transcriptional Program. Sci. Rep. 2017, 7 (1), 2091. https://doi.org/10.1038/s41598-017-02286-y.

(200) Tan, D.-X.; Reiter, R. J. Mitochondria: The Birth Place, Battle Ground and the Site of Melatonin Metabolism in Cells. Melatonin Res. 2019, 2 (1), 44–66. https://doi.org/10.32794/mr11250011.

(201) Mocayar Marón, F. J.; Ferder, L.; Reiter, R. J.; Manucha, W. Daily and Seasonal Mitochondrial Protection: Unraveling Common Possible Mechanisms Involving Vitamin D and Melatonin. J. Steroid Biochem. Mol. Biol. 2020, 199, 105595. https://doi.org/10.1016/j.jsbmb.2020.105595.

(202) Muscogiuri, G.; Barrea, L.; Scannapieco, M.; Di Somma, C.; Scacchi, M.; Aimaretti, G.; Savastano, S.; Colao, A.; Marzullo, P. The Lullaby of the Sun: The Role of Vitamin D in Sleep Disturbance. Sleep Med. 2019, 54, 262–265. https://doi.org/10.1016/j.sleep.2018.10.033.

(203) Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.-Y.; Xu, D.-P.; Li, H.-B. Dietary Sources and Bioactivities of Melatonin. Nutrients 2017, 9 (4). https://doi.org/10.3390/nu9040367.

(204) Nabavi, S. M.; Nabavi, S. F.; Sureda, A.; Xiao, J.; Dehpour, A. R.; Shirooie, S.; Silva, A. S.; Baldi, A.; Khan, H.; Daglia, M. Anti-Inflammatory Effects of Melatonin: A Mechanistic Review. Crit. Rev. Food Sci. Nutr. 2019, 59 (sup1), S4–S16. https://doi.org/10.1080/10408398.2018.1487927.

(205) Ferracioli-Oda, E.; Qawasmi, A.; Bloch, M. H. Meta-Analysis: Melatonin for the Treatment of Primary Sleep Disorders. PLoS ONE 2013, 8 (5). https://doi.org/10.1371/journal.pone.0063773.

(206) Auld, F.; Maschauer, E. L.; Morrison, I.; Skene, D. J.; Riha, R. L. Evidence for the Efficacy of Melatonin in the Treatment of Primary Adult Sleep Disorders. Sleep Med. Rev. 2017, 34, 10–22. https://doi.org/10.1016/j.smrv.2016.06.005.

(207) Pieri, C.; Marra, M.; Gáspár, R.; Damjanovich, S. Melatonin Protects LDL from Oxidation but Does Not Prevent the Apolipoprotein Derivatization. Biochem. Biophys. Res. Commun. 1996, 222 (2), 256–260. https://doi.org/10.1006/bbrc.1996.0731.

(208) Paradies, G.; Paradies, V.; Ruggiero, F. M.; Petrosillo, G. Protective Role of Melatonin in Mitochondrial Dysfunction and Related Disorders. Arch. Toxicol. 2015, 89 (6), 923–939. https://doi.org/10.1007/s00204-015-1475-z.

(209) Zhai, M.; Li, B.; Duan, W.; Jing, L.; Zhang, B.; Zhang, M.; Yu, L.; Liu, Z.; Yu, B.; Ren, K.; Gao, E.; Yang, Y.; Liang, H.; Jin, Z.; Yu, S. Melatonin Ameliorates Myocardial Ischemia Reperfusion Injury through SIRT3-Dependent Regulation of Oxidative Stress and Apoptosis. J. Pineal Res. 2017, 63 (2). https://doi.org/10.1111/jpi.12419.

(210) Pointer, C. B.; Klegeris, A. Cardiolipin in Central Nervous System Physiology and Pathology. Cell. Mol. Neurobiol. 2017, 37 (7), 1161–1172. https://doi.org/10.1007/s10571-016-0458-9.

(211) Lee, F.-Y.; Sun, C.-K.; Sung, P.-H.; Chen, K.-H.; Chua, S.; Sheu, J.-J.; Chung, S.-Y.; Chai, H.-T.; Chen, Y.-L.; Huang, T.-H.; Huang, C.-R.; Li, Y.-C.; Luo, C.-W.; Yip, H.-K. Daily Melatonin Protects the Endothelial Lineage and Functional Integrity against the Aging Process, Oxidative Stress, and Toxic Environment and Restores Blood Flow in Critical Limb Ischemia Area in Mice. J. Pineal Res. 2018, 65 (2), e12489. https://doi.org/10.1111/jpi.12489.

(212) Ortiz, A.; Espino, J.; Bejarano, I.; Lozano, G. M.; Monllor, F.; García, J. F.; Pariente, J. A.; Rodríguez, A. B. High Endogenous Melatonin Concentrations Enhance Sperm Quality and Short-Term in Vitro Exposure to Melatonin Improves Aspects of Sperm Motility. J. Pineal Res. 2011, 50 (2), 132–139. https://doi.org/10.1111/j.1600-079X.2010.00822.x.

(213) Reiter, R. J.; Tamura, H.; Tan, D. X.; Xu, X.-Y. Melatonin and the Circadian System: Contributions to Successful Female Reproduction. Fertil. Steril. 2014, 102 (2), 321–328. https://doi.org/10.1016/j.fertnstert.2014.06.014.

(214) Nakamura, Y.; Tamura, H.; Kashida, S.; Takayama, H.; Yamagata, Y.; Karube, A.; Sugino, N.; Kato, H. Changes of Serum Melatonin Level and Its Relationship to Feto-Placental Unit during Pregnancy. J. Pineal Res. 2001, 30 (1), 29–33. https://doi.org/10.1034/j.1600-079x.2001.300104.x.

(215) Nagai, R.; Watanabe, K.; Wakatsuki, A.; Hamada, F.; Shinohara, K.; Hayashi, Y.; Imamura, R.; Fukaya, T. Melatonin Preserves Fetal Growth in Rats by Protecting against Ischemia/Reperfusion-Induced Oxidative/Nitrosative Mitochondrial Damage in the Placenta. J. Pineal Res. 2008, 45 (3), 271–276. https://doi.org/10.1111/j.1600-079X.2008.00586.x.

(216) Hardeland, R. Melatonin and Inflammation-Story of a Double-Edged Blade. J. Pineal Res. 2018, 65 (4), e12525. https://doi.org/10.1111/jpi.12525.

(217) Reiter, R. J.; Sharma, R.; Ma, Q.; Liu, C.; Manucha, W.; Abreu-Gonzalez, P.; Dominguez-Rodriguez, A. Plasticity of Glucose Metabolism in Activated Immune Cells: Advantages for Melatonin Inhibition of COVID-19 Disease. Melatonin Res. 2020, 3 (3), 362–379. https://doi.org/10.32794/mr11250068.

(218) English, J.; Bojkowski, C. J.; Poulton, A. L.; Symons, A. M.; Arendt, J. Metabolism and Pharmacokinetics of Melatonin in the Ewe. J. Pineal Res. 1987, 4 (4), 351–358. https://doi.org/10.1111/j.1600-079x.1987.tb00874.x.

(219) Palagini, L.; Manni, R.; Aguglia, E.; Amore, M.; Brugnoli, R.; Bioulac, S.; Bourgin, P.; Micoulaud Franchi, J.-A.; Girardi, P.; Grassi, L.; Lopez, R.; Mencacci, C.; Plazzi, G.; Maruani, J.; Minervino, A.; Philip, P.; Royant Parola, S.; Poirot, I.; Nobili, L.; Biggio, G.; Schroder, C. M.; Geoffroy, P. A. International Expert Opinions and Recommendations on the Use of Melatonin in the Treatment of Insomnia and Circadian Sleep Disturbances in Adult Neuropsychiatric Disorders. Front. Psychiatry 2021, 12, 688890. https://doi.org/10.3389/fpsyt.2021.688890.

(220) Huo, X.; Wang, C.; Yu, Z.; Peng, Y.; Wang, S.; Feng, S.; Zhang, S.; Tian, X.; Sun, C.; Liu, K.; Deng, S.; Ma, X. Human Transporters, PEPT1/2, Facilitate Melatonin Transportation into Mitochondria of Cancer Cells: An Implication of the Therapeutic Potential. J. Pineal Res. 2017, 62 (4). https://doi.org/10.1111/jpi.12390.

(221) Souberbielle, J.-C.; Massart, C.; Brailly-Tabard, S.; Cavalier, E.; Chanson, P. Prevalence and Determinants of Vitamin D Deficiency in Healthy French Adults: The VARIETE Study. Endocrine 2016, 53 (2), 543–550. https://doi.org/10.1007/s12020-016-0960-3.

(222) Chronobiologie Inserm, La science pour la santé. Inserm. https://www.inserm.fr/dossier/chronobiologie/ (accessed 2021-08-20).

(223) Brainard, G. C.; Sliney, D.; Hanifin, J. P.; Glickman, G.; Byrne, B.; Greeson, J. M.; Jasser, S.; Gerner, E.; Rollag, M. D. Sensitivity of the Human Circadian System to Short-Wavelength (420-Nm) Light. J. Biol. Rhythms 2008, 23 (5), 379–386. https://doi.org/10.1177/0748730408323089.

(224) Bonmati-Carrion, M. A.; Arguelles-Prieto, R.; Martinez-Madrid, M. J.; Reiter, R.; Hardeland, R.; Rol, M. A.; Madrid, J. A. Protecting the Melatonin Rhythm through Circadian Healthy Light Exposure. Int. J. Mol. Sci. 2014, 15 (12), 23448–23500. https://doi.org/10.3390/ijms151223448.

(225) Dauchy, R. T.; Dauchy, E. M.; Tirrell, R. P.; Hill, C. R.; Davidson, L. K.; Greene, M. W.; Tirrell, P. C.; Wu, J.; Sauer, L. A.; Blask, D. E. Dark-Phase Light Contamination Disrupts Circadian Rhythms in Plasma Measures of Endocrine Physiology and Metabolism in Rats. Comp. Med. 2010, 60 (5), 348–356.

(226) Fujioka, A.; Fujioka, T.; Tsuruta, R.; Izumi, T.; Kasaoka, S.; Maekawa, T. Effects of a Constant Light Environment on Hippocampal Neurogenesis and Memory in Mice. Neurosci. Lett. 2011, 488 (1), 41–44. https://doi.org/10.1016/j.neulet.2010.11.001.

(227) Cheung, I. N.; Zee, P. C.; Shalman, D.; Malkani, R. G.; Kang, J.; Reid, K. J. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults. PloS One 2016, 11 (5), e0155601. https://doi.org/10.1371/journal.pone.0155601.

(228) Park, Y.-M. M.; White, A. J.; Jackson, C. L.; Weinberg, C. R.; Sandler, D. P. Association of Exposure to Artificial Light at Night While Sleeping With Risk of Obesity in Women. JAMA Intern. Med. 2019. https://doi.org/10.1001/jamainternmed.2019.0571.

(229) Simpson, S.; Blizzard, L.; Otahal, P.; Van der Mei, I.; Taylor, B. Latitude Is Significantly Associated with the Prevalence of Multiple Sclerosis: A Meta-Analysis. J. Neurol. Neurosurg. Psychiatry 2011, 82 (10), 1132–1141. https://doi.org/10.1136/jnnp.2011.240432.

(230) Ahlgren, C.; Odén, A.; Lycke, J. High Nationwide Prevalence of Multiple Sclerosis in Sweden. Mult. Scler. Houndmills Basingstoke Engl. 2011, 17 (8), 901–908. https://doi.org/10.1177/1352458511403794.

(231) Klingberg, E.; Oleröd, G.; Konar, J.; Petzold, M.; Hammarsten, O. Seasonal Variations in Serum 25-Hydroxy Vitamin D Levels in a Swedish Cohort. Endocrine 2015, 49 (3), 800–808. https://doi.org/10.1007/s12020-015-0548-3.

(232) Ghareghani, M.; Reiter, R. J.; Zibara, K.; Farhadi, N. Latitude, Vitamin D, Melatonin, and Gut Microbiota Act in Concert to Initiate Multiple Sclerosis: A New Mechanistic Pathway. Front. Immunol. 2018, 9. https://doi.org/10.3389/fimmu.2018.02484.

(233) Videnovic, A.; Klerman, E. B.; Wang, W.; Marconi, A.; Kuhta, T.; Zee, P. C. Timed Light Therapy for Sleep and Daytime Sleepiness Associated With Parkinson Disease: A Randomized Clinical Trial. JAMA Neurol. 2017, 74 (4), 411–418. https://doi.org/10.1001/jamaneurol.2016.5192.

(234) Brouwer, A.; van Raalte, D. H.; Nguyen, H.-T.; Rutters, F.; van de Ven, P. M.; Elders, P. J. M.; Moll, A. C.; Van Someren, E. J. W.; Snoek, F. J.; Beekman, A. T. F.; Bremmer, M. A. Effects of Light Therapy on Mood and Insulin Sensitivity in Patients With Type 2 Diabetes and Depression: Results From a Randomized Placebo-Controlled Trial. Diabetes Care 2019, 42 (4), 529–538. https://doi.org/10.2337/dc18-1732.

(235) Mateen, F. J.; Vogel, A. C.; Kaplan, T. B.; Hotan, G. C.; Grundy, S. J.; Holroyd, K. B.; Manalo, N.; Stauder, M.; Videnovic, A. Light Therapy for Multiple Sclerosis-Associated Fatigue: A Randomized, Controlled Phase II Trial. J. Neurol. 2020, 267 (8), 2319–2327. https://doi.org/10.1007/s00415-020-09845-w.

(236) Mero, R. Prévalence Estimée de La Dépression Saisonnière : Étude Épidémiologique En Soins Primaires Dans Cinq Cabinets de Seine Maritime, 2017.

(237) Otsuka, T.; Kawai, M.; Togo, Y.; Goda, R.; Kawase, T.; Matsuo, H.; Iwamoto, A.; Nagasawa, M.; Furuse, M.; Yasuo, S. Photoperiodic Responses of Depression-like Behavior, the Brain Serotonergic System, and Peripheral Metabolism in Laboratory Mice. Psychoneuroendocrinology 2014, 40, 37–47. https://doi.org/10.1016/j.psyneuen.2013.10.013.

(238) Pereira, J. C.; Pradella Hallinan, M.; Alves, R. C. Secondary to Excessive Melatonin Synthesis, the Consumption of Tryptophan from Outside the Blood-Brain Barrier and Melatonin over-Signaling in the Pars Tuberalis May Be Central to the Pathophysiology of Winter Depression. Med. Hypotheses 2017, 98, 69–75. https://doi.org/10.1016/j.mehy.2016.11.020.

(239) Hardeland, R. Melatonin in Plants and Other Phototrophs: Advances and Gaps Concerning the Diversity of Functions. J. Exp. Bot. 2015, 66 (3), 627–646. https://doi.org/10.1093/jxb/eru386.

(240) Sollid, S. T.; Hutchinson, M. Y. S.; Fuskevåg, O. M.; Joakimsen, R. M.; Jorde, R. Large Individual Differences in Serum 25-Hydroxyvitamin D Response to Vitamin D Supplementation: Effects of Genetic Factors, Body Mass Index, and Baseline Concentration. Results from a Randomized Controlled Trial. Horm. Metab. Res. Horm. Stoffwechselforschung Horm. Metab. 2016, 48 (1), 27–34. https://doi.org/10.1055/s-0034-1398617.

(241) Marcinowska-Suchowierska, E.; Kupisz-Urbańska, M.; Łukaszkiewicz, J.; Płudowski, P.; Jones, G. Vitamin D Toxicity–A Clinical Perspective. Front. Endocrinol. 2018, 9, 550. https://doi.org/10.3389/fendo.2018.00550.

(242) Holick, M. F.; Binkley, N. C.; Bischoff-Ferrari, H. A.; Gordon, C. M.; Hanley, D. A.; Heaney, R. P.; Murad, M. H.; Weaver, C. M.; Endocrine Society. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96 (7), 1911–1930. https://doi.org/10.1210/jc.2011-0385.

(243) Takács, I.; Tóth, B. E.; Szekeres, L.; Szabó, B.; Bakos, B.; Lakatos, P. Randomized Clinical Trial to Comparing Efficacy of Daily, Weekly and Monthly Administration of Vitamin D3. Endocrine 2017, 55 (1), 60–65. https://doi.org/10.1007/s12020-016-1137-9.

(244) Aglipay, M.; Birken, C. S.; Parkin, P. C.; Loeb, M. B.; Thorpe, K.; Chen, Y.; Laupacis, A.; Mamdani, M.; Macarthur, C.; Hoch, J. S.; Mazzulli, T.; Maguire, J. L.; TARGet Kids! Collaboration. Effect of High-Dose vs Standard-Dose Wintertime Vitamin D Supplementation on Viral Upper Respiratory Tract Infections in Young Healthy Children. JAMA 2017, 318 (3), 245–254. https://doi.org/10.1001/jama.2017.8708.

(245) Wang, H.; Olivero, W.; Wang, D.; Lanzino, G. Cold as a Therapeutic Agent. Acta Neurochir. (Wien) 2006, 148 (5), 565–570; discussion 569-570. https://doi.org/10.1007/s00701-006-0747-z.

(246) Polderman, K. H. Induced Hypothermia and Fever Control for Prevention and Treatment of Neurological Injuries. Lancet Lond. Engl. 2008, 371 (9628), 1955–1969. https://doi.org/10.1016/S0140-6736(08)60837-5.

(247) Ali, S. S.; Hsiao, M.; Zhao, H. W.; Dugan, L. L.; Haddad, G. G.; Zhou, D. Hypoxia-Adaptation Involves Mitochondrial Metabolic Depression and Decreased ROS Leakage. PloS One 2012, 7 (5), e36801. https://doi.org/10.1371/journal.pone.0036801.

(248) Hogg, D. W.; Pamenter, M. E.; Dukoff, D. J.; Buck, L. T. Decreases in Mitochondrial Reactive Oxygen Species Initiate GABA(A) Receptor-Mediated Electrical Suppression in Anoxia-Tolerant Turtle Neurons. J. Physiol. 2015, 593 (10), 2311–2326. https://doi.org/10.1113/JP270474.

(249) Pamenter, M. E.; Gomez, C. R.; Richards, J. G.; Milsom, W. K. Mitochondrial Responses to Prolonged Anoxia in Brain of Red-Eared Slider Turtles. Biol. Lett. 2016, 12 (1). https://doi.org/10.1098/rsbl.2015.0797.

(250) Beall, C. M.; Brittenham, G. M.; Strohl, K. P.; Blangero, J.; Williams-Blangero, S.; Goldstein, M. C.; Decker, M. J.; Vargas, E.; Villena, M.; Soria, R.; Alarcon, A. M.; Gonzales, C. Hemoglobin Concentration of High-Altitude Tibetans and Bolivian Aymara. Am. J. Phys. Anthropol. 1998, 106 (3), 385–400. https://doi.org/10.1002/(SICI)1096-8644(199807)106:3<385::AID-AJPA10>3.0.CO;2-X.

(251) Beall, C. M.; Decker, M. J.; Brittenham, G. M.; Kushner, I.; Gebremedhin, A.; Strohl, K. P. An Ethiopian Pattern of Human Adaptation to High-Altitude Hypoxia. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (26), 17215–17218. https://doi.org/10.1073/pnas.252649199.

(252) Prabhakar, N. R.; Semenza, G. L. Adaptive and Maladaptive Cardiorespiratory Responses to Continuous and Intermittent Hypoxia Mediated by Hypoxia-Inducible Factors 1 and 2. Physiol. Rev. 2012, 92 (3), 967–1003. https://doi.org/10.1152/physrev.00030.2011.

(253) Ouellet, V.; Labbé, S. M.; Blondin, D. P.; Phoenix, S.; Guérin, B.; Haman, F.; Turcotte, E. E.; Richard, D.; Carpentier, A. C. Brown Adipose Tissue Oxidative Metabolism Contributes to Energy Expenditure during Acute Cold Exposure in Humans. J. Clin. Invest. 2012, 122 (2), 545–552. https://doi.org/10.1172/JCI60433.

(254) Cypess, A. M.; Chen, Y.-C.; Sze, C.; Wang, K.; English, J.; Chan, O.; Holman, A. R.; Tal, I.; Palmer, M. R.; Kolodny, G. M.; Kahn, C. R. Cold but Not Sympathomimetics Activates Human Brown Adipose Tissue in Vivo. Proc. Natl. Acad. Sci. 2012, 109 (25), 10001–10005. https://doi.org/10.1073/pnas.1207911109.

(255) Lichtenbelt, W. van M.; Kingma, B.; van der Lans, A.; Schellen, L. Cold Exposure–an Approach to Increasing Energy Expenditure in Humans. Trends Endocrinol. Metab. TEM 2014, 25 (4), 165–167. https://doi.org/10.1016/j.tem.2014.01.001.

(256) Janský, L.; Pospísilová, D.; Honzová, S.; Ulicný, B.; Srámek, P.; Zeman, V.; Kamínková, J. Immune System of Cold-Exposed and Cold-Adapted Humans. Eur. J. Appl. Physiol. 1996, 72 (5–6), 445–450. https://doi.org/10.1007/BF00242274.

(257) Imbeault, P.; Dépault, I.; Haman, F. Cold Exposure Increases Adiponectin Levels in Men. Metabolism. 2009, 58 (4), 552–559. https://doi.org/10.1016/j.metabol.2008.11.017.

(258) Girotti, M.; Donegan, J. J.; Morilak, D. A. Chronic Intermittent Cold Stress Sensitizes Neuro-Immune Reactivity in the Rat Brain. Psychoneuroendocrinology 2011, 36 (8), 1164–1174. https://doi.org/10.1016/j.psyneuen.2011.02.008.

(259) Keil, G.; Cummings, E.; de Magalhães, J. P. Being Cool: How Body Temperature Influences Ageing and Longevity. Biogerontology 2015, 16 (4), 383–397. https://doi.org/10.1007/s10522-015-9571-2.

(260) Oksala, N. K. J.; Ekmekçi, F. G.; Ozsoy, E.; Kirankaya, S.; Kokkola, T.; Emecen, G.; Lappalainen, J.; Kaarniranta, K.; Atalay, M. Natural Thermal Adaptation Increases Heat Shock Protein Levels and Decreases Oxidative Stress. Redox Biol. 2014, 3, 25–28. https://doi.org/10.1016/j.redox.2014.10.003.

(261) Ja, L.; Pr, M. Cold Shock Proteins: From Cellular Mechanisms to Pathophysiology and Disease. Cell Commun. Signal. CCS 2018, 16 (1). https://doi.org/10.1186/s12964-018-0274-6.

(262) Thieringer, H. A.; Jones, P. G.; Inouye, M. Cold Shock and Adaptation. BioEssays News Rev. Mol. Cell. Dev. Biol. 1998, 20 (1), 49–57. https://doi.org/10.1002/(SICI)1521-1878(199801)20:1<49::AID-BIES8>3.0.CO;2-N.

(263) Eglin, C. M.; Butt, G.; Howden, S.; Nash, T.; Costello, J. Rapid Habituation of the Cold Shock Response. Extreme Physiol. Med. 2015, 4 (Suppl 1), A38. https://doi.org/10.1186/2046-7648-4-S1-A38.

(264) INSERM. Activité physique : Prévention et traitement des maladies chroniques. Inserm. https://www.inserm.fr/information-en-sante/expertises-collectives/activite-physique-prevention-et-traitement-maladies-chroniques (accessed 2020-01-13).

(265) Zhao, M.; Veeranki, S. P.; Magnussen, C. G.; Xi, B. Recommended Physical Activity and All Cause and Cause Specific Mortality in US Adults: Prospective Cohort Study. BMJ 2020, 370. https://doi.org/10.1136/bmj.m2031.

(266) Lee, I.-M.; Shiroma, E. J.; Lobelo, F.; Puska, P.; Blair, S. N.; Katzmarzyk, P. T. Impact of Physical Inactivity on the World’s Major Non-Communicable Diseases. Lancet 2012, 380 (9838), 219–229. https://doi.org/10.1016/S0140-6736(12)61031-9.

(267) Lim, S. S. and col. A Comparative Risk Assessment of Burden of Disease and Injury Attributable to 67 Risk Factors and Risk Factor Clusters in 21 Regions, 1990-2010: A Systematic Analysis for the Global Burden of Disease Study 2010. Lancet Lond. Engl. 2012, 380 (9859), 2224–2260. https://doi.org/10.1016/S0140-6736(12)61766-8.

(268) Doukky, R.; Mangla, A.; Ibrahim, Z.; Poulin, M.-F.; Avery, E.; Collado, F. M.; Kaplan, J.; Richardson, D.; Powell, L. H. Impact of Physical Inactivity on Mortality in Patients With Heart Failure. Am. J. Cardiol. 2016, 117 (7), 1135–1143. https://doi.org/10.1016/j.amjcard.2015.12.060.

(269) Safdar, A.; Saleem, A.; Tarnopolsky, M. A. The Potential of Endurance Exercise-Derived Exosomes to Treat Metabolic Diseases. Nat. Rev. Endocrinol. 2016, 12 (9), 504–517. https://doi.org/10.1038/nrendo.2016.76.

(270) Ji, L. L.; Kang, C.; Zhang, Y. Exercise-Induced Hormesis and Skeletal Muscle Health. Free Radic. Biol. Med. 2016, 98, 113–122. https://doi.org/10.1016/j.freeradbiomed.2016.02.025.

(271) Radak, Z.; Ishihara, K.; Tekus, E.; Varga, C.; Posa, A.; Balogh, L.; Boldogh, I.; Koltai, E. Exercise, Oxidants, and Antioxidants Change the Shape of the Bell-Shaped Hormesis Curve. Redox Biol. 2017, 12, 285–290. https://doi.org/10.1016/j.redox.2017.02.015.

(272) Radák, Z.; Sasvári, M.; Nyakas, C.; Pucsok, J.; Nakamoto, H.; Goto, S. Exercise Preconditioning against Hydrogen Peroxide-Induced Oxidative Damage in Proteins of Rat Myocardium. Arch. Biochem. Biophys. 2000, 376 (2), 248–251. https://doi.org/10.1006/abbi.2000.1719.

(273) Ji, L. L. Modulation of Skeletal Muscle Antioxidant Defense by Exercise: Role of Redox Signaling. Free Radic. Biol. Med. 2008, 44 (2), 142–152. https://doi.org/10.1016/j.freeradbiomed.2007.02.031.

(274) Radak, Z.; Zhao, Z.; Koltai, E.; Ohno, H.; Atalay, M. Oxygen Consumption and Usage during Physical Exercise: The Balance between Oxidative Stress and ROS-Dependent Adaptive Signaling. Antioxid. Redox Signal. 2013, 18 (10), 1208–1246. https://doi.org/10.1089/ars.2011.4498.

(275) Abruzzo, P. M.; Esposito, F.; Marchionni, C.; di Tullio, S.; Belia, S.; Fulle, S.; Veicsteinas, A.; Marini, M. Moderate Exercise Training Induces ROS-Related Adaptations to Skeletal Muscles. Int. J. Sports Med. 2013, 34 (8), 676–687. https://doi.org/10.1055/s-0032-1323782.

(276) Baldwin, K. M.; Klinkerfuss, G. H.; Terjung, R. L.; Molé, P. A.; Holloszy, J. O. Respiratory Capacity of White, Red, and Intermediate Muscle: Adaptative Response to Exercise. Am. J. Physiol. 1972, 222 (2), 373–378. https://doi.org/10.1152/ajplegacy.1972.222.2.373.

(277) Memme, J. M.; Erlich, A. T.; Phukan, G.; Hood, D. A. Exercise and Mitochondrial Health. J. Physiol. 2019. https://doi.org/10.1113/JP278853.

(278) Porter, C.; Reidy, P. T.; Bhattarai, N.; Sidossis, L. S.; Rasmussen, B. B. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle. Med. Sci. Sports Exerc. 2015, 47 (9), 1922–1931. https://doi.org/10.1249/MSS.0000000000000605.

(279) Groennebaek, T.; Vissing, K. Impact of Resistance Training on Skeletal Muscle Mitochondrial Biogenesis, Content, and Function. Front. Physiol. 2017, 8, 713. https://doi.org/10.3389/fphys.2017.00713.

(280) Koo, J.-H.; Kang, E.-B.; Cho, J.-Y. Resistance Exercise Improves Mitochondrial Quality Control in a Rat Model of Sporadic Inclusion Body Myositis. Gerontology 2019, 65 (3), 240–252. https://doi.org/10.1159/000494723.

(281) Taivassalo, T.; Fu, K.; Johns, T.; Arnold, D.; Karpati, G.; Shoubridge, E. A. Gene Shifting: A Novel Therapy for Mitochondrial Myopathy. Hum. Mol. Genet. 1999, 8 (6), 1047–1052. https://doi.org/10.1093/hmg/8.6.1047.

(282) Kowald, A.; Kirkwood, T. B. L. Transcription Could Be the Key to the Selection Advantage of Mitochondrial Deletion Mutants in Aging. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (8), 2972–2977. https://doi.org/10.1073/pnas.1314970111.

(283) Carter, H. N.; Chen, C. C. W.; Hood, D. A. Mitochondria, Muscle Health, and Exercise with Advancing Age. Physiol. Bethesda Md 2015, 30 (3), 208–223. https://doi.org/10.1152/physiol.00039.2014.

(284) Hood, M. S.; Little, J. P.; Tarnopolsky, M. A.; Myslik, F.; Gibala, M. J. Low-Volume Interval Training Improves Muscle Oxidative Capacity in Sedentary Adults. Med. Sci. Sports Exerc. 2011, 43 (10), 1849–1856. https://doi.org/10.1249/MSS.0b013e3182199834.

(285) Little, J. P.; Safdar, A.; Bishop, D.; Tarnopolsky, M. A.; Gibala, M. J. An Acute Bout of High-Intensity Interval Training Increases the Nuclear Abundance of PGC-1α and Activates Mitochondrial Biogenesis in Human Skeletal Muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300 (6), R1303-1310. https://doi.org/10.1152/ajpregu.00538.2010.

(286) Gradari, S.; Pallé, A.; McGreevy, K. R.; Fontán-Lozano, Á.; Trejo, J. L. Can Exercise Make You Smarter, Happier, and Have More Neurons? A Hormetic Perspective. Front. Neurosci. 2016, 10, 93. https://doi.org/10.3389/fnins.2016.00093.

(287) Bramble, D. M.; Lieberman, D. E. Endurance Running and the Evolution of Homo. Nature 2004, 432 (7015), 345–352. https://doi.org/10.1038/nature03052.

(288) Maslin, M. A.; Shultz, S.; Trauth, M. H. A Synthesis of the Theories and Concepts of Early Human Evolution. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370 (1663). https://doi.org/10.1098/rstb.2014.0064.

(289) Vining, A. Q.; Nunn, C. L. Evolutionary Change in Physiological Phenotypes along the Human Lineage. Evol. Med. Public Health 2016, 2016 (1), 312–324. https://doi.org/10.1093/emph/eow026.

(290) Noakes, T.; Spedding, M. Olympics: Run for Your Life. Nature 2012, 487 (7407), 295–296. https://doi.org/10.1038/487295a.

(291) Mattson, M. P. Superior Pattern Processing Is the Essence of the Evolved Human Brain. Front. Neurosci. 2014, 8, 265. https://doi.org/10.3389/fnins.2014.00265.

(292) Mattson, M. P. Lifelong Brain Health Is a Lifelong Challenge: From Evolutionary Principles to Empirical Evidence. Ageing Res. Rev. 2015, 20, 37–45. https://doi.org/10.1016/j.arr.2014.12.011.

(293) Raefsky, S. M.; Mattson, M. P. Adaptive Responses of Neuronal Mitochondria to Bioenergetic Challenges: Roles in Neuroplasticity and Disease Resistance. Free Radic. Biol. Med. 2017, 102, 203–216. https://doi.org/10.1016/j.freeradbiomed.2016.11.045.

(294) Mattson, M. P. Evolutionary Aspects of Human Exercise—Born to Run Purposefully. Ageing Res. Rev. 2012, 11 (3), 347–352. https://doi.org/10.1016/j.arr.2012.01.007.

(295) Wrann, C. D.; White, J. P.; Salogiannnis, J.; Laznik-Bogoslavski, D.; Wu, J.; Ma, D.; Lin, J. D.; Greenberg, M. E.; Spiegelman, B. M. Exercise Induces Hippocampal BDNF through a PGC-1α/FNDC5 Pathway. Cell Metab. 2013, 18 (5), 649–659. https://doi.org/10.1016/j.cmet.2013.09.008.

(296) Marosi, K.; Mattson, M. P. BDNF Mediates Adaptive Brain and Body Responses to Energetic Challenges. Trends Endocrinol. Metab. TEM 2014, 25 (2), 89–98. https://doi.org/10.1016/j.tem.2013.10.006.

(297) Mattson, M. P.; Moehl, K.; Ghena, N.; Schmaedick, M.; Cheng, A. Intermittent Metabolic Switching, Neuroplasticity and Brain Health. Nat. Rev. Neurosci. 2018, 19 (2), 63–80. https://doi.org/10.1038/nrn.2017.156.

(298) Fraga, M. F.; Ballestar, E.; Paz, M. F.; Ropero, S.; Setien, F.; Ballestar, M. L.; Heine-Suñer, D.; Cigudosa, J. C.; Urioste, M.; Benitez, J.; Boix-Chornet, M.; Sanchez-Aguilera, A.; Ling, C.; Carlsson, E.; Poulsen, P.; Vaag, A.; Stephan, Z.; Spector, T. D.; Wu, Y.-Z.; Plass, C.; Esteller, M. Epigenetic Differences Arise during the Lifetime of Monozygotic Twins. Proc. Natl. Acad. Sci. 2005, 102 (30), 10604–10609.

(299) Klosin, A.; Casas, E.; Hidalgo-Carcedo, C.; Vavouri, T.; Lehner, B. Transgenerational Transmission of Environmental Information in C. Elegans. Science 2017, 356 (6335), 320–323. https://doi.org/10.1126/science.aah6412.

(300) Jirtle, R. L.; Skinner, M. K. Environmental Epigenomics and Disease Susceptibility. Nat. Rev. Genet. 2007, 8 (4), 253–262. https://doi.org/10.1038/nrg2045.

(301) Gluckman, P. D.; Hanson, M. A.; Cooper, C.; Thornburg, K. L. Effect of In Utero and Early-Life Conditions on Adult Health and Disease. N. Engl. J. Med. 2008, 359 (1), 61–73. https://doi.org/10.1056/NEJMra0708473.

(302) Burdge, G. C.; Lillycrop, K. A. Nutrition, Epigenetics, and Developmental Plasticity: Implications for Understanding Human Disease. Annu. Rev. Nutr. 2010, 30, 315–339. https://doi.org/10.1146/annurev.nutr.012809.104751.

(303) Vaquero, A.; Reinberg, D. Calorie Restriction and the Exercise of Chromatin. Genes Dev. 2009, 23 (16), 1849–1869. https://doi.org/10.1101/gad.1807009.

(304) Katada, S.; Imhof, A.; Sassone-Corsi, P. Connecting Threads: Epigenetics and Metabolism. Cell 2012, 148 (1–2), 24–28. https://doi.org/10.1016/j.cell.2012.01.001.

(305) Eisenberg, T. and col. Nucleocytosolic Depletion of the Energy Metabolite Acetyl-Coenzyme A Stimulates Autophagy and Prolongs Lifespan. Cell Metab. 2014, 19 (3), 431–444. https://doi.org/10.1016/j.cmet.2014.02.010.

(306) Lumey, L. H.; Stein, A. D.; Kahn, H. S.; van der Pal-de Bruin, K. M.; Blauw, G. J.; Zybert, P. A.; Susser, E. S. Cohort Profile: The Dutch Hunger Winter Families Study. Int. J. Epidemiol. 2007, 36 (6), 1196–1204. https://doi.org/10.1093/ije/dym126.

(307) Pembrey, M. E.; Bygren, L. O.; Kaati, G.; Edvinsson, S.; Northstone, K.; Sjöström, M.; Golding, J.; ALSPAC Study Team. Sex-Specific, Male-Line Transgenerational Responses in Humans. Eur. J. Hum. Genet. EJHG 2006, 14 (2), 159–166. https://doi.org/10.1038/sj.ejhg.5201538.

(308) Pembrey, M.; Saffery, R.; Bygren, L. O. Human Transgenerational Responses to Early-Life Experience: Potential Impact on Development, Health and Biomedical Research. J. Med. Genet. 2014, 51 (9), 563–572. https://doi.org/10.1136/jmedgenet-2014-102577.

(309) Vågerö, D.; Pinger, P. R.; Aronsson, V.; van den Berg, G. J. Paternal Grandfather’s Access to Food Predicts All-Cause and Cancer Mortality in Grandsons. Nat. Commun. 2018, 9 (1), 5124. https://doi.org/10.1038/s41467-018-07617-9.

(310) Kaati, G.; Bygren, L. O.; Edvinsson, S. Cardiovascular and Diabetes Mortality Determined by Nutrition during Parents’ and Grandparents’ Slow Growth Period. Eur. J. Hum. Genet. EJHG 2002, 10 (11), 682–688. https://doi.org/10.1038/sj.ejhg.5200859.

(311) Wei, Y.; Yang, C.-R.; Wei, Y.-P.; Zhao, Z.-A.; Hou, Y.; Schatten, H.; Sun, Q.-Y. Paternally Induced Transgenerational Inheritance of Susceptibility to Diabetes in Mammals. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (5), 1873–1878. https://doi.org/10.1073/pnas.1321195111.

(312) Kucharski, R.; Maleszka, J.; Foret, S.; Maleszka, R. Nutritional Control of Reproductive Status in Honeybees via DNA Methylation. Science 2008, 319 (5871), 1827–1830. https://doi.org/10.1126/science.1153069.

(313) Waterland, R. A.; Jirtle, R. L. Transposable Elements: Targets for Early Nutritional Effects on Epigenetic Gene Regulation. Mol. Cell. Biol. 2003, 23 (15), 5293–5300. https://doi.org/10.1128/MCB.23.15.5293-5300.2003.

(314) Cropley, J. E.; Suter, C. M.; Beckman, K. B.; Martin, D. I. K. Germ-Line Epigenetic Modification of the Murine A vy Allele by Nutritional Supplementation. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (46), 17308–17312. https://doi.org/10.1073/pnas.0607090103.

(315) Waterland, R.; Travisano, M.; Tahiliani, K.; Rached, M.; Mirza, S. Methyl Donor Supplementation Prevents Transgenerational Amplification of Obesity. Int. J. Obes. 2005 2008, 32 (9), 1373–1379. https://doi.org/10.1038/ijo.2008.100.

(316) Dominguez-Salas, P.; Moore, S. E.; Baker, M. S.; Bergen, A. W.; Cox, S. E.; Dyer, R. A.; Fulford, A. J.; Guan, Y.; Laritsky, E.; Silver, M. J.; Swan, G. E.; Zeisel, S. H.; Innis, S. M.; Waterland, R. A.; Prentice, A. M.; Hennig, B. J. Maternal Nutrition at Conception Modulates DNA Methylation of Human Metastable Epialleles. Nat. Commun. 2014, 5, 3746.

(317) Prevention of Neural Tube Defects: Results of the Medical Research Council Vitamin Study. The Lancet 1991, 338 (8760), 131–137. https://doi.org/10.1016/0140-6736(91)90133-A.

(318) Pitkin, R. M. Folate and Neural Tube Defects. Am. J. Clin. Nutr. 2007, 85 (1), 285S-288S. https://doi.org/10.1093/ajcn/85.1.285S.

(319) Boxmeer, J. C.; Smit, M.; Utomo, E.; Romijn, J. C.; Eijkemans, M. J. C.; Lindemans, J.; Laven, J. S. E.; Macklon, N. S.; Steegers, E. A. P.; Steegers-Theunissen, R. P. M. Low Folate in Seminal Plasma Is Associated with Increased Sperm DNA Damage. Fertil. Steril. 2009, 92 (2), 548–556. https://doi.org/10.1016/j.fertnstert.2008.06.010.

(320) Borradale, D. C.; Kimlin, M. G. Folate Degradation Due to Ultraviolet Radiation: Possible Implications for Human Health and Nutrition. Nutr. Rev. 2012, 70 (7), 414–422. https://doi.org/10.1111/j.1753-4887.2012.00485.x.

(321) Lucock, M. D.; Jones, P. R.; Veysey, M.; Thota, R.; Garg, M.; Furst, J.; Martin, C.; Yates, Z.; Scarlett, C. J.; Jablonski, N. G.; Chaplin, G.; Beckett, E. L. Biophysical Evidence to Support and Extend the Vitamin D-Folate Hypothesis as a Paradigm for the Evolution of Human Skin Pigmentation. Am. J. Hum. Biol. Off. J. Hum. Biol. Counc. 2021, e23667. https://doi.org/10.1002/ajhb.23667.

(322) Mk, O.; Ae, S.; Ac, P.; A, J.; A, V.; A, J.; J, M. Ultraviolet Photodegradation of Folic Acid. J. Photochem. Photobiol. B 2005, 80 (1), 47–55. https://doi.org/10.1016/j.jphotobiol.2005.03.001.

(323) Juzeniene, A.; Thu Tam, T. T.; Iani, V.; Moan, J. 5-Methyltetrahydrofolate Can Be Photodegraded by Endogenous Photosensitizers. Free Radic. Biol. Med. 2009, 47 (8), 1199–1204. https://doi.org/10.1016/j.freeradbiomed.2009.07.030.

(324) Jablonski, N. G.; Chaplin, G. Human Skin Pigmentation as an Adaptation to UV Radiation. Proc. Natl. Acad. Sci. 2010, 107 (Supplement 2), 8962–8968. https://doi.org/10.1073/pnas.0914628107.

(325) Branda, R. F.; Eaton, J. W. Skin Color and Nutrient Photolysis: An Evolutionary Hypothesis. Science 1978, 201 (4356), 625–626. https://doi.org/10.1126/science.675247.

(326) Yan, Y.; Liang, H.; Yang, S.; Wang, J.; Xie, L.; Qin, X.; Li, S. Methylenetetrahydrofolate Reductase A1298C Polymorphism and Diabetes Risk: Evidence from a Meta-Analysis. Ren. Fail. 2014, 36 (7), 1013–1017. https://doi.org/10.3109/0886022X.2014.917429.

(327) Whayne, T. F. Methylenetetrahydrofolate Reductase C677T Polymorphism, Venous Thrombosis, Cardiovascular Risk, and Other Effects. Angiology 2015, 66 (5), 401–404. https://doi.org/10.1177/0003319714548871.

(328) Enciso, M.; Sarasa, J.; Xanthopoulou, L.; Bristow, S.; Bowles, M.; Fragouli, E.; Delhanty, J.; Wells, D. Polymorphisms in the MTHFR Gene Influence Embryo Viability and the Incidence of Aneuploidy. Hum. Genet. 2016, 135 (5), 555–568. https://doi.org/10.1007/s00439-016-1652-z.

(329) Yi, K.; Yang, L.; Lan, Z.; Xi, M. The Association between MTHFR Polymorphisms and Cervical Cancer Risk: A System Review and Meta Analysis. Arch. Gynecol. Obstet. 2016, 294 (3), 579–588. https://doi.org/10.1007/s00404-016-4037-6.

(330) Wan, L.; Li, Y.; Zhang, Z.; Sun, Z.; He, Y.; Li, R. Methylenetetrahydrofolate Reductase and Psychiatric Diseases. Transl. Psychiatry 2018, 8 (1), 242. https://doi.org/10.1038/s41398-018-0276-6.

(331) Vanden Berghe, W. Epigenetic Impact of Dietary Polyphenols in Cancer Chemoprevention: Lifelong Remodeling of Our Epigenomes. Pharmacol. Res. 2012, 65 (6), 565–576. https://doi.org/10.1016/j.phrs.2012.03.007.

(332) Blaschke, K.; Ebata, K. T.; Karimi, M. M.; Zepeda-Martínez, J. A.; Goyal, P.; Mahapatra, S.; Tam, A.; Laird, D. J.; Hirst, M.; Rao, A.; Lorincz, M. C.; Ramalho-Santos, M. Vitamin C Induces Tet-Dependent DNA Demethylation and a Blastocyst-like State in ES Cells. Nature 2013, 500 (7461), 222–226. https://doi.org/10.1038/nature12362.

(333) Hussey, B.; Lindley, M. R.; Mastana, S. S. Omega 3 Fatty Acids, Inflammation and DNA Methylation: An Overview. Clin. Lipidol. 2017, 12 (1), 24–32. https://doi.org/10.1080/17584299.2017.1319454.

(334) Crujeiras, A. B.; Pissios, P.; Moreno-Navarrete, J. M.; Diaz-Lagares, A.; Sandoval, J.; Gomez, A.; Ricart, W.; Esteller, M.; Casanueva, F. F.; Fernandez-Real, J. M. An Epigenetic Signature in Adipose Tissue Is Linked to Nicotinamide N-Methyltransferase Gene Expression. Mol. Nutr. Food Res. 2018, e1700933. https://doi.org/10.1002/mnfr.201700933.

(335) Mischke, M.; Plösch, T. The Gut Microbiota and Their Metabolites: Potential Implications for the Host Epigenome. Adv. Exp. Med. Biol. 2016, 902, 33–44. https://doi.org/10.1007/978-3-319-31248-4_3.

(336) Pan, W.-H.; Sommer, F.; Falk-Paulsen, M.; Ulas, T.; Best, P.; Fazio, A.; Kachroo, P.; Luzius, A.; Jentzsch, M.; Rehman, A.; Müller, F.; Lengauer, T.; Walter, J.; Künzel, S.; Baines, J. F.; Schreiber, S.; Franke, A.; Schultze, J. L.; Bäckhed, F.; Rosenstiel, P. Exposure to the Gut Microbiota Drives Distinct Methylome and Transcriptome Changes in Intestinal Epithelial Cells during Postnatal Development. Genome Med. 2018, 10 (1), 27. https://doi.org/10.1186/s13073-018-0534-5.

(337) Hu, J.; Yu, Y. Epigenetic Response Profiles into Environmental Epigenotoxicant Screening and Health Risk Assessment: A Critical Review. Chemosphere 2019, 226, 259–272. https://doi.org/10.1016/j.chemosphere.2019.03.096.

(338) Reznick, D. N.; Ghalambor, C. K.; Crooks, K. Experimental Studies of Evolution in Guppies: A Model for Understanding the Evolutionary Consequences of Predator Removal in Natural Communities. Mol. Ecol. 2008, 17 (1), 97–107. https://doi.org/10.1111/j.1365-294X.2007.03474.x.

(339) Scoville, A. G.; Pfrender, M. E. Phenotypic Plasticity Facilitates Recurrent Rapid Adaptation to Introduced Predators. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (9), 4260–4263. https://doi.org/10.1073/pnas.0912748107.

(340) Diamond, J. Evolution, Consequences and Future of Plant and Animal Domestication. Nature 2002, 418 (6898), 700–707. https://doi.org/10.1038/nature01019.

(341) Pearce-Duvet, J. M. C. The Origin of Human Pathogens: Evaluating the Role of Agriculture and Domestic Animals in the Evolution of Human Disease. Biol. Rev. Camb. Philos. Soc. 2006, 81 (3), 369–382. https://doi.org/10.1017/S1464793106007020.

(342) Wolfe, N. D.; Dunavan, C. P.; Diamond, J. Origins of Major Human Infectious Diseases. Nature 2007, 447 (7142), 279–283. https://doi.org/10.1038/nature05775.

(343) Stone, A. C. Getting Sick in the Neolithic. Nat. Ecol. Evol. 2020, 4 (3), 286–287. https://doi.org/10.1038/s41559-020-1115-8.

(344) Vogel, F.; Chakravartti, M. R. ABO Blood Groups and Smallpox in a Rural Population of West Bengal and Bihar (India). Humangenetik 1966, 3 (2), 166–180. https://doi.org/10.1007/BF00291297.

(345) Ruff, C. B.; Holt, B.; Niskanen, M.; Sladek, V.; Berner, M.; Garofalo, E.; Garvin, H. M.; Hora, M.; Junno, J.-A.; Schuplerova, E.; Vilkama, R.; Whittey, E. Gradual Decline in Mobility with the Adoption of Food Production in Europe. Proc. Natl. Acad. Sci. 2015, 112 (23), 7147–7152. https://doi.org/10.1073/pnas.1502932112.

(346) Frassetto, L.; Morris, R. C.; Sellmeyer, D. E.; Todd, K.; Sebastian, A. Diet, Evolution and Aging–the Pathophysiologic Effects of the Post-Agricultural Inversion of the Potassium-to-Sodium and Base-to-Chloride Ratios in the Human Diet. Eur. J. Nutr. 2001, 40 (5), 200–213.

(347) Weller, O. The Earliest Rock Salt Exploitation in Europe: A Salt Mountain in the Spanish Neolithic. Antiquity 2002, 76 (292), 317–318. https://doi.org/10.1017/S0003598X0009030X.

(348) Lemann, J.; Litzow, J. R.; Lennon, E. J. The Effects of Chronic Acid Loads in Normal Man: Further Evidence for the Participation of Bone Mineral in the Defense against Chronic Metabolic Acidosis. J. Clin. Invest. 1966, 45 (10), 1608–1614.

(349) Barzel, U. S.; Jowsey, J. The Effects of Chronic Acid and Alkali Administration on Bone Turnover in Adult Rats. Clin. Sci. 1969, 36 (3), 517–524.

(350) Massey, L. K.; Whiting, S. J. Dietary Salt, Urinary Calcium, and Kidney Stone Risk. Nutr. Rev. 1995, 53 (5), 131–139. https://doi.org/10.1111/j.1753-4887.1995.tb01536.x.

(351) Jansson, B. Geographic Cancer Risk and Intracellular Potassium/Sodium Ratios. Cancer Detect. Prev. 1986, 9 (3–4), 171–194.

(352) Devine, A.; Criddle, R. A.; Dick, I. M.; Kerr, D. A.; Prince, R. L. A Longitudinal Study of the Effect of Sodium and Calcium Intakes on Regional Bone Density in Postmenopausal Women. Am. J. Clin. Nutr. 1995, 62 (4), 740–745. https://doi.org/10.1093/ajcn/62.4.740.

(353) Antonios, T. F.; MacGregor, G. A. Salt–More Adverse Effects. Lancet Lond. Engl. 1996, 348 (9022), 250–251. https://doi.org/10.1016/s0140-6736(96)01463-8.

(354) Ströhle, A.; Hahn, A.; Sebastian, A. Estimation of the Diet-Dependent Net Acid Load in 229 Worldwide Historically Studied Hunter-Gatherer Societies. Am. J. Clin. Nutr. 2010, 91 (2), 406–412. https://doi.org/10.3945/ajcn.2009.28637.

(355) Frassetto, L. A.; Nash, E.; Morris, R. C.; Sebastian, A. Comparative Effects of Potassium Chloride and Bicarbonate on Thiazide-Induced Reduction in Urinary Calcium Excretion. Kidney Int. 2000, 58 (2), 748–752. https://doi.org/10.1046/j.1523-1755.2000.00221.x.

(356) Dawson-Hughes, B.; Harris, S. S.; Palermo, N. J.; Gilhooly, C. H.; Shea, M. K.; Fielding, R. A.; Ceglia, L. Potassium Bicarbonate Supplementation Lowers Bone Turnover and Calcium Excretion in Older Men and Women: A Randomized Dose-Finding Trial. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2015, 30 (11), 2103–2111. https://doi.org/10.1002/jbmr.2554.

(357) Kok, D. J.; Iestra, J. A.; Doorenbos, C. J.; Papapoulos, S. E. The Effects of Dietary Excesses in Animal Protein and in Sodium on the Composition and the Crystallization Kinetics of Calcium Oxalate Monohydrate in Urines of Healthy Men. J. Clin. Endocrinol. Metab. 1990, 71 (4), 861–867. https://doi.org/10.1210/jcem-71-4-861.

(358) Sakhaee, K.; Harvey, J. A.; Padalino, P. K.; Whitson, P.; Pak, C. Y. The Potential Role of Salt Abuse on the Risk for Kidney Stone Formation. J. Urol. 1993, 150 (2 Pt 1), 310–312. https://doi.org/10.1016/s0022-5347(17)35468-x.

(359) Patin, E.; Quintana-Murci, L. Demeter’s Legacy: Rapid Changes to Our Genome Imposed by Diet. Trends Ecol. Evol. 2008, 23 (2), 56–59. https://doi.org/10.1016/j.tree.2007.11.002.

(360) Perry, G. H.; Dominy, N. J.; Claw, K. G.; Lee, A. S.; Fiegler, H.; Redon, R.; Werner, J.; Villanea, F. A.; Mountain, J. L.; Misra, R.; Carter, N. P.; Lee, C.; Stone, A. C. Diet and the Evolution of Human Amylase Gene Copy Number Variation. Nat. Genet. 2007, 39 (10), 1256–1260. https://doi.org/10.1038/ng2123.

(361) Heyer, E.; Quintana-Murci, L. Evolutionary Genetics as a Tool to Target Genes Involved in Phenotypes of Medical Relevance. Evol. Appl. 2009, 2 (1), 71–80. https://doi.org/10.1111/j.1752-4571.2008.00061.x.

(362) Ségurel, L.; Austerlitz, F.; Toupance, B.; Gautier, M.; Kelley, J. L.; Pasquet, P.; Lonjou, C.; Georges, M.; Voisin, S.; Cruaud, C.; Couloux, A.; Hegay, T.; Aldashev, A.; Vitalis, R.; Heyer, E. Positive Selection of Protective Variants for Type 2 Diabetes from the Neolithic Onward: A Case Study in Central Asia. Eur. J. Hum. Genet. 2013, 21 (10), 1146–1151. https://doi.org/10.1038/ejhg.2012.295.

(363) MacHugh, D. E.; Larson, G.; Orlando, L. Taming the Past: Ancient DNA and the Study of Animal Domestication. Annu. Rev. Anim. Biosci. 2017, 5, 329–351. https://doi.org/10.1146/annurev-animal-022516-022747.

(364) Vigne, J.-D. The Origins of Animal Domestication and Husbandry: A Major Change in the History of Humanity and the Biosphere. C. R. Biol. 2011, 334 (3), 171–181. https://doi.org/10.1016/j.crvi.2010.12.009.

(365) Wang, Y.; Harvey, C. B.; Hollox, E. J.; Phillips, A. D.; Poulter, M.; Clay, P.; Walker-Smith, J. A.; Swallow, D. M. The Genetically Programmed Down-Regulation of Lactase in Children. Gastroenterology 1998, 114 (6), 1230–1236. https://doi.org/10.1016/s0016-5085(98)70429-9.

(366) Tishkoff, S. A.; Reed, F. A.; Ranciaro, A.; Voight, B. F.; Babbitt, C. C.; Silverman, J. S.; Powell, K.; Mortensen, H. M.; Hirbo, J. B.; Osman, M.; Ibrahim, M.; Omar, S. A.; Lema, G.; Nyambo, T. B.; Ghori, J.; Bumpstead, S.; Pritchard, J. K.; Wray, G. A.; Deloukas, P. Convergent Adaptation of Human Lactase Persistence in Africa and Europe. Nat. Genet. 2007, 39 (1), 31–40. https://doi.org/10.1038/ng1946.

(367) Day, A. J.; Cañada, F. J.; Díaz, J. C.; Kroon, P. A.; Mclauchlan, R.; Faulds, C. B.; Plumb, G. W.; Morgan, M. R.; Williamson, G. Dietary Flavonoid and Isoflavone Glycosides Are Hydrolysed by the Lactase Site of Lactase Phlorizin Hydrolase. FEBS Lett. 2000, 468 (2–3), 166–170. https://doi.org/10.1016/s0014-5793(00)01211-4.

(368) Schuster, S. C. and col. M. Complete Khoisan and Bantu Genomes from Southern Africa. Nature 2010, 463 (7283), 943–947. https://doi.org/10.1038/nature08795.

(369) Ameur, A.; Enroth, S.; Johansson, A.; Zaboli, G.; Igl, W.; Johansson, A. C. V.; Rivas, M. A.; Daly, M. J.; Schmitz, G.; Hicks, A. A.; Meitinger, T.; Feuk, L.; van Duijn, C.; Oostra, B.; Pramstaller, P. P.; Rudan, I.; Wright, A. F.; Wilson, J. F.; Campbell, H.; Gyllensten, U. Genetic Adaptation of Fatty-Acid Metabolism: A Human-Specific Haplotype Increasing the Biosynthesis of Long-Chain Omega-3 and Omega-6 Fatty Acids. Am. J. Hum. Genet. 2012, 90 (5), 809–820. https://doi.org/10.1016/j.ajhg.2012.03.014.

(370) Mathieson, I. and col. Genome-Wide Patterns of Selection in 230 Ancient Eurasians. Nature 2015, 528 (7583), 499–503. https://doi.org/10.1038/nature16152.

(371) Buckley, M. T.; Racimo, F.; Allentoft, M. E.; Jensen, M. K.; Jonsson, A.; Huang, H.; Hormozdiari, F.; Sikora, M.; Marnetto, D.; Eskin, E.; Jørgensen, M. E.; Grarup, N.; Pedersen, O.; Hansen, T.; Kraft, P.; Willerslev, E.; Nielsen, R. Selection in Europeans on Fatty Acid Desaturases Associated with Dietary Changes. Mol. Biol. Evol. 2017, 34 (6), 1307–1318. https://doi.org/10.1093/molbev/msx103.

(372) Hogenkamp, P. S.; Mars, M.; Stafleu, A.; de Graaf, C. Repeated Consumption of a Large Volume of Liquid and Semi-Solid Foods Increases Ad Libitum Intake, but Does Not Change Expected Satiety. Appetite 2012, 59 (2), 419–424. https://doi.org/10.1016/j.appet.2012.06.008.

(373) Chambers, L. Food Texture and the Satiety Cascade. Nutr. Bull. 2016, 41 (3), 277–282. https://doi.org/10.1111/nbu.12221.

(374) Fiszman, S.; Tarrega, A. Expectations of Food Satiation and Satiety Reviewed with Special Focus on Food Properties. Food Funct. 2017, 8 (8), 2686–2697. https://doi.org/10.1039/c7fo00307b.

(375) Fardet, A. Minimally Processed Foods Are More Satiating and Less Hyperglycemic than Ultra-Processed Foods: A Preliminary Study with 98 Ready-to-Eat Foods. Food Funct. 2016, 7 (5), 2338–2346. https://doi.org/10.1039/c6fo00107f.

(376) Rauber, F.; Louzada, M. L. da C.; Steele, E. M.; Millett, C.; Monteiro, C. A.; Levy, R. B. Ultra-Processed Food Consumption and Chronic Non-Communicable Diseases-Related Dietary Nutrient Profile in the UK (2008–2014). Nutrients 2018, 10 (5). https://doi.org/10.3390/nu10050587.

(377) Monteiro, C. Nutrition and Health. The Issue Is Not Food, nor Nutrients, so Much as Processing. Public Health Nutr. 2009, 12 (5), 729–731. https://doi.org/10.1017/S1368980009005291.

(378) Moubarac, J.-C.; Batal, M.; Louzada, M. L.; Martinez Steele, E.; Monteiro, C. A. Consumption of Ultra-Processed Foods Predicts Diet Quality in Canada. Appetite 2017, 108, 512–520. https://doi.org/10.1016/j.appet.2016.11.006.

(379) Fardet, A.; Rock, E. Perspective: Reductionist Nutrition Research Has Meaning Only within the Framework of Holistic and Ethical Thinking. Adv. Nutr. Bethesda Md 2018, 9 (6), 655–670. https://doi.org/10.1093/advances/nmy044.

(380) Tremblay, A.; Bellisle, F. Nutrients, Satiety, and Control of Energy Intake. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2015, 40 (10), 971–979. https://doi.org/10.1139/apnm-2014-0549.

(381) Gordon, E. L.; Ariel-Donges, A. H.; Bauman, V.; Merlo, L. J. What Is the Evidence for “Food Addiction?” A Systematic Review. Nutrients 2018, 10 (4). https://doi.org/10.3390/nu10040477.

(382) Poti, J. M.; Braga, B.; Qin, B. Ultra-Processed Food Intake and Obesity: What Really Matters for Health-Processing or Nutrient Content? Curr. Obes. Rep. 2017, 6 (4), 420–431. https://doi.org/10.1007/s13679-017-0285-4.

(383) Juul, F.; Martinez-Steele, E.; Parekh, N.; Monteiro, C. A.; Chang, V. W. Ultra-Processed Food Consumption and Excess Weight among US Adults. Br. J. Nutr. 2018, 120 (1), 90–100. https://doi.org/10.1017/S0007114518001046.

(384) Nardocci, M.; Leclerc, B.-S.; Louzada, M.-L.; Monteiro, C. A.; Batal, M.; Moubarac, J.-C. Consumption of Ultra-Processed Foods and Obesity in Canada. Can. J. Public Health. 2019, 110 (1), 4–14. https://doi.org/10.17269/s41997-018-0130-x.

(385) Hall, K. D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K. Y.; Chung, S. T.; Costa, E.; Courville, A.; Darcey, V.; Fletcher, L. A.; Forde, C. G.; Gharib, A. M.; Guo, J.; Howard, R.; Joseph, P. V.; McGehee, S.; Ouwerkerk, R.; Raisinger, K.; Rozga, I.; Stagliano, M.; Walter, M.; Walter, P. J.; Yang, S.; Zhou, M. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30 (1), 67-77.e3. https://doi.org/10.1016/j.cmet.2019.05.008.

(386) Neri, D.; Martinez-Steele, E.; Monteiro, C. A.; Levy, R. B. Consumption of Ultra-Processed Foods and Its Association with Added Sugar Content in the Diets of US Children, NHANES 2009-2014. Pediatr. Obes. 2019, 14 (12), e12563. https://doi.org/10.1111/ijpo.12563.

(387) American Heart Association. Too much ultra-processed foods linked to lower heart health. American Heart Association. https://newsroom.heart.org/news/too-much-ultra-processed-foods-linked-to-lower-heart-health (accessed 2020-01-03).

(388) Srour, B.; Fezeu, L. K.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Andrianasolo, R. M.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; Monteiro, C. A.; Julia, C.; Touvier, M. Ultra-Processed Food Intake and Risk of Cardiovascular Disease: Prospective Cohort Study (NutriNet-Santé). The BMJ 2019, 365. https://doi.org/10.1136/bmj.l1451.

(389) Srour, B.; Fezeu, L. K.; Kesse-Guyot, E.; Allès, B.; Debras, C.; Druesne-Pecollo, N.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; Monteiro, C. A.; Julia, C.; Touvier, M. Ultraprocessed Food Consumption and Risk of Type 2 Diabetes Among Participants of the NutriNet-Santé Prospective Cohort. JAMA Intern. Med. 2019. https://doi.org/10.1001/jamainternmed.2019.5942.

(390) Zinöcker, M. K.; Lindseth, I. A. The Western Diet–Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients 2018, 10 (3). https://doi.org/10.3390/nu10030365.

(391) Singh, V.; Yeoh, B. S.; Chassaing, B.; Xiao, X.; Saha, P.; Olvera, R. A.; Lapek, J. D.; Zhang, L.; Wang, W.-B.; Hao, S.; Flythe, M. D.; Gonzalez, D. J.; Cani, P. D.; Conejo-Garcia, J. R.; Xiong, N.; Kennett, M. J.; Joe, B.; Patterson, A. D.; Gewirtz, A. T.; Vijay-Kumar, M. Dysregulated Microbial Fermentation of Soluble Fiber Induces Cholestatic Liver Cancer. Cell 2018, 175 (3), 679-694.e22. https://doi.org/10.1016/j.cell.2018.09.004.

(392) Adjibade, M.; Julia, C.; Allès, B.; Touvier, M.; Lemogne, C.; Srour, B.; Hercberg, S.; Galan, P.; Assmann, K. E.; Kesse-Guyot, E. Prospective Association between Ultra-Processed Food Consumption and Incident Depressive Symptoms in the French NutriNet-Santé Cohort. BMC Med. 2019, 17 (1), 78. https://doi.org/10.1186/s12916-019-1312-y.

(393) Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; Hercberg, S.; Lavalette, C.; Monteiro, C. A.; Julia, C.; Touvier, M. Consumption of Ultra-Processed Foods and Cancer Risk: Results from NutriNet-Santé Prospective Cohort. BMJ 2018, 360. https://doi.org/10.1136/bmj.k322.

(394) Kim, H.; Hu, E. A.; Rebholz, C. M. Ultra-Processed Food Intake and Mortality in the USA: Results from the Third National Health and Nutrition Examination Survey (NHANES III, 1988-1994). Public Health Nutr. 2019, 22 (10), 1777–1785. https://doi.org/10.1017/S1368980018003890. (395)   Rico-Campà, A.; Martínez-González, M. A.; Alvarez-Alvarez, I.; Mendonça, R. de D.; Fuente-Arrillaga, C. de la; Gómez-Donoso, C.; Bes-Rastrollo, M. Association between Consumption of Ultra-Processed Foods and All Cause Mortality: SUN Prospective Cohort Study. BMJ 2019, 365. https://doi.org/10.1136/bmj.l1949.

Partie 2 : De l’adaptation aux maladies de civilisation : comment nous sommes-nous progressivement désadaptés ?

1)       Tsalamandris, S.; Antonopoulos, A. S.; Oikonomou, E.; Papamikroulis, G.-A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. Rev. 2019, 14 (1), 50–59. https://doi.org/10.15420/ecr.2018.33.1.

2)       Calder, P. C.; Ahluwalia, N.; Brouns, F.; Buetler, T.; Clement, K.; Cunningham, K.; Esposito, K.; Jönsson, L. S.; Kolb, H.; Lansink, M.; Marcos, A.; Margioris, A.; Matusheski, N.; Nordmann, H.; O’Brien, J.; Pugliese, G.; Rizkalla, S.; Schalkwijk, C.; Tuomilehto, J.; Wärnberg, J.; Watzl, B.; Winklhofer-Roob, B. M. Dietary Factors and Low-Grade Inflammation in Relation to Overweight and Obesity. Br. J. Nutr. 2011, 106 Suppl 3, S5-78. https://doi.org/10.1017/S0007114511005460.

(3)      Wensveen, F. M.; Valentić, S.; Šestan, M.; Turk Wensveen, T.; Polić, B. The “Big Bang” in Obese Fat: Events Initiating Obesity-Induced Adipose Tissue Inflammation. Eur. J. Immunol. 2015, 45 (9), 2446–2456. https://doi.org/10.1002/eji.201545502.

(4)      Saltiel, A. R.; Olefsky, J. M. Inflammatory Mechanisms Linking Obesity and Metabolic Disease. J. Clin. Invest. 2017, 127 (1), 1–4. https://doi.org/10.1172/JCI92035.

(5)      Tao, Q.; Ang, T. F. A.; DeCarli, C.; Auerbach, S. H.; Devine, S.; Stein, T. D.; Zhang, X.; Massaro, J.; Au, R.; Qiu, W. Q. Association of Chronic Low-Grade Inflammation With Risk of Alzheimer Disease in ApoE4 Carriers. JAMA Netw. Open 2018, 1 (6), e183597. https://doi.org/10.1001/jamanetworkopen.2018.3597.

(6)      Kinney, J. W.; Bemiller, S. M.; Murtishaw, A. S.; Leisgang, A. M.; Salazar, A. M.; Lamb, B. T. Inflammation as a Central Mechanism in Alzheimer’s Disease. Alzheimers Dement. Transl. Res. Clin. Interv. 2018, 4, 575–590. https://doi.org/10.1016/j.trci.2018.06.014.

(7)      Rolli-Derkinderen, M.; Leclair-Visonneau, L.; Bourreille, A.; Coron, E.; Neunlist, M.; Derkinderen, P. Is Parkinson’s Disease a Chronic Low-Grade Inflammatory Bowel Disease? J. Neurol. 2019. https://doi.org/10.1007/s00415-019-09321-0.

(8)      Adams, B.; Nunes, J. M.; Page, M. J.; Roberts, T.; Carr, J.; Nell, T. A.; Kell, D. B.; Pretorius, E. Parkinson’s Disease: A Systemic Inflammatory Disease Accompanied by Bacterial Inflammagens. Front. Aging Neurosci. 2019, 11. https://doi.org/10.3389/fnagi.2019.00210.

(9)      Ugalde-Muñiz, P.; Fetter-Pruneda, I.; Navarro, L.; García, E.; Chavarría, A. Chronic Systemic Inflammation Exacerbates Neurotoxicity in a Parkinson’s Disease Model. Oxid. Med. Cell. Longev. 2020, 2020. https://doi.org/10.1155/2020/4807179.

(10)    Grivennikov, S. I.; Greten, F. R.; Karin, M. Immunity, Inflammation, and Cancer. Cell 2010, 140 (6), 883–899. https://doi.org/10.1016/j.cell.2010.01.025.

(11)    Iyengar, N. M.; Gucalp, A.; Dannenberg, A. J.; Hudis, C. A. Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34 (35), 4270–4276. https://doi.org/10.1200/JCO.2016.67.4283.

(12)    Zitvogel, L.; Pietrocola, F.; Kroemer, G. Nutrition, Inflammation and Cancer. Nat. Immunol. 2017, 18 (8), 843–850. https://doi.org/10.1038/ni.3754.

(13)    Danesh, J.; Whincup, P.; Walker, M.; Lennon, L.; Thomson, A.; Appleby, P.; Gallimore, J. R.; Pepys, M. B. Low Grade Inflammation and Coronary Heart Disease: Prospective Study and Updated Meta-Analyses. BMJ 2000, 321 (7255), 199–204.

(14)    Chawla, A.; Nguyen, K. D.; Goh, Y. P. S. Macrophage-Mediated Inflammation in Metabolic Disease. Nat. Rev. Immunol. 2011, 11 (11), 738–749. https://doi.org/10.1038/nri3071.

(15)    Onat, A.; Kaya, A.; Ademoglu, E. Modified Risk Associations of Lipoproteins and Apolipoproteins by Chronic Low-Grade Inflammation. Expert Rev. Cardiovasc. Ther. 2018, 16 (1), 39–48. https://doi.org/10.1080/14779072.2018.1417839.

(16)    Ferrucci, L.; Fabbri, E. Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty. Nat. Rev. Cardiol. 2018, 15 (9), 505–522. https://doi.org/10.1038/s41569-018-0064-2.

(17)    Moss, A. C. The Meaning of Low-Grade Inflammation in Clinically Quiescent Inflammatory Bowel Disease. Curr. Opin. Gastroenterol. 2014, 30 (4), 365–369. https://doi.org/10.1097/MOG.0000000000000082.

(18)    Bennett, J. M.; Reeves, G.; Billman, G. E.; Sturmberg, J. P. Inflammation–Nature’s Way to Efficiently Respond to All Types of Challenges: Implications for Understanding and Managing “the Epidemic” of Chronic Diseases. Front. Med. 2018, 5. https://doi.org/10.3389/fmed.2018.00316.

(19))  Duan, L.; Rao, X.; Sigdel, K. R. Regulation of Inflammation in Autoimmune Disease. J. Immunol. Res. 2019, 2019. https://doi.org/10.1155/2019/7403796.

(20)    Montoya, J. G.; Holmes, T. H.; Anderson, J. N.; Maecker, H. T.; Rosenberg-Hasson, Y.; Valencia, I. J.; Chu, L.; Younger, J. W.; Tato, C. M.; Davis, M. M. Cytokine Signature Associated with Disease Severity in Chronic Fatigue Syndrome Patients. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (34), E7150–E7158. https://doi.org/10.1073/pnas.1710519114.

(21)    Lacourt, T. E.; Vichaya, E. G.; Chiu, G. S.; Dantzer, R.; Heijnen, C. J. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-Adaptive Energy Expenditure. Front. Behav. Neurosci. 2018, 12. https://doi.org/10.3389/fnbeh.2018.00078.

(22)    Zalli, A.; Jovanova, O.; Hoogendijk, W. J. G.; Tiemeier, H.; Carvalho, L. A. Low-Grade Inflammation Predicts Persistence of Depressive Symptoms. Psychopharmacology (Berl.) 2016, 233 (9), 1669–1678. https://doi.org/10.1007/s00213-015-3919-9.

(23)    Miller, A. H.; Raison, C. L. The Role of Inflammation in Depression: From Evolutionary Imperative to Modern Treatment Target. Nat. Rev. Immunol. 2016, 16 (1), 22–34. https://doi.org/10.1038/nri.2015.5.

(24)    Leonard, B. E. Inflammation and Depression: A Causal or Coincidental Link to the Pathophysiology? Acta Neuropsychiatr. 2018, 30 (1), 1–16. https://doi.org/10.1017/neu.2016.69.

(25)    Osimo, E. F.; Baxter, L. J.; Lewis, G.; Jones, P. B.; Khandaker, G. M. Prevalence of Low-Grade Inflammation in Depression: A Systematic Review and Meta-Analysis of CRP Levels. Psychol. Med. 2019, 49 (12), 1958–1970. https://doi.org/10.1017/S0033291719001454.

(26)    Mehta, M. M.; Weinberg, S. E.; Chandel, N. S. Mitochondrial Control of Immunity: Beyond ATP. Nat. Rev. Immunol. 2017, 17 (10), 608–620. https://doi.org/10.1038/nri.2017.66.

(27)    Desdín-Micó, G.; Soto-Heredero, G.; Mittelbrunn, M. Mitochondrial Activity in T Cells. Mitochondrion 2018, 41, 51–57. https://doi.org/10.1016/j.mito.2017.10.006.

(29)    Sun, N.; Youle, R. J.; Finkel, T. The Mitochondrial Basis of Aging. Mol. Cell 2016, 61 (5), 654–666. https://doi.org/10.1016/j.molcel.2016.01.028.

(30)    López-Otín, C.; Galluzzi, L.; Freije, J. M. P.; Madeo, F.; Kroemer, G. Metabolic Control of Longevity. Cell 2016, 166 (4), 802–821. https://doi.org/10.1016/j.cell.2016.07.031.

(31)    Finkel, T. Signal Transduction by Reactive Oxygen Species. J. Cell Biol. 2011, 194 (1), 7–15. https://doi.org/10.1083/jcb.201102095.

(32)    Quirós, P. M.; Mottis, A.; Auwerx, J. Mitonuclear Communication in Homeostasis and Stress. Nat. Rev. Mol. Cell Biol. 2016, 17 (4), 213–226. https://doi.org/10.1038/nrm.2016.23.

(33)    Bárcena, C.; Mayoral, P.; Quirós, P. M. Mitohormesis, an Antiaging Paradigm. Int. Rev. Cell Mol. Biol. 2018, 340, 35–77. https://doi.org/10.1016/bs.ircmb.2018.05.002.

(34)    Shadel, G. S.; Horvath, T. L. Mitochondrial ROS Signaling in Organismal Homeostasis. Cell 2015, 163 (3), 560–569. https://doi.org/10.1016/j.cell.2015.10.001.

(35)    Ristow, M.; Zarse, K. How Increased Oxidative Stress Promotes Longevity and Metabolic Health: The Concept of Mitochondrial Hormesis (Mitohormesis). Exp. Gerontol. 2010, 45 (6), 410–418. https://doi.org/10.1016/j.exger.2010.03.014.

(36)    Chandel, N. S. Evolution of Mitochondria as Signaling Organelles. Cell Metab. 2015, 22 (2), 204–206. https://doi.org/10.1016/j.cmet.2015.05.013.

(37)    Merry, T. L.; Ristow, M. Mitohormesis in Exercise Training. Free Radic. Biol. Med. 2016, 98, 123–130. https://doi.org/10.1016/j.freeradbiomed.2015.11.032.

(38)    Liu, Y.; Samuel, B. S.; Breen, P. C.; Ruvkun, G. Caenorhabditis Elegans Pathways That Surveil and Defend Mitochondria. Nature 2014, 508 (7496), 406–410. https://doi.org/10.1038/nature13204.

(39)    Ma, J.; Coarfa, C.; Qin, X.; Bonnen, P. E.; Milosavljevic, A.; Versalovic, J.; Aagaard, K. MtDNA Haplogroup and Single Nucleotide Polymorphisms Structure Human Microbiome Communities. BMC Genomics 2014, 15 (1), 257. https://doi.org/10.1186/1471-2164-15-257.

(40)    Yardeni, T.; Tanes, C. E.; Bittinger, K.; Mattei, L. M.; Schaefer, P. M.; Singh, L. N.; Wu, G. D.; Murdock, D. G.; Wallace, D. C. Host Mitochondria Influence Gut Microbiome Diversity: A Role for ROS. Sci. Signal. 2019, 12 (588). https://doi.org/10.1126/scisignal.aaw3159.

(41)    Castro-Quezada, I.; Román-Viñas, B.; Serra-Majem, L. The Mediterranean Diet and Nutritional Adequacy: A Review. Nutrients 2014, 6 (1), 231–248. https://doi.org/10.3390/nu6010231.

(42)    Trichopoulou, A.; Lagiou, P. Healthy Traditional Mediterranean Diet: An Expression of Culture, History, and Lifestyle. Nutr. Rev. 1997, 55 (11 Pt 1), 383–389. https://doi.org/10.1111/j.1753-4887.1997.tb01578.x.

(43)    Kris-Etherton, P.; Eckel, R. H.; Howard, B. V.; St Jeor, S.; Bazzarre, T. L.; Nutrition Committee Population Science Committee and Clinical Science Committee of the American Heart Association. AHA Science Advisory: Lyon Diet Heart Study. Benefits of a Mediterranean-Style, National Cholesterol Education Program/American Heart Association Step I Dietary Pattern on Cardiovascular Disease. Circulation 2001, 103 (13), 1823–1825. https://doi.org/10.1161/01.cir.103.13.1823.

(44)    Serra-Majem, L.; Román-Viñas, B.; Sanchez-Villegas, A.; Guasch-Ferré, M.; Corella, D.; La Vecchia, C. Benefits of the Mediterranean Diet: Epidemiological and Molecular Aspects. Mol. Aspects Med. 2019, 67, 1–55. https://doi.org/10.1016/j.mam.2019.06.001.

(45)    Kargin, D.; Tomaino, L.; Serra-Majem, L. Experimental Outcomes of the Mediterranean Diet: Lessons Learned from the Predimed Randomized Controlled Trial. Nutrients 2019, 11 (12). https://doi.org/10.3390/nu11122991.

(46)    Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; Lamuela-Raventos, R. M.; Serra-Majem, L.; Pintó, X.; Basora, J.; Muñoz, M. A.; Sorlí, J. V.; Martínez, J. A.; Fitó, M.; Gea, A.; Hernán, M. A.; Martínez-González, M. A.; PREDIMED Study Investigators. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378 (25), e34. https://doi.org/10.1056/NEJMoa1800389.

(47)    Salas-Salvadó, J.; Bulló, M.; Estruch, R.; Ros, E.; Covas, M.-I.; Ibarrola-Jurado, N.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Romaguera, D.; Lapetra, J.; Lamuela-Raventós, R. M.; Serra-Majem, L.; Pintó, X.; Basora, J.; Muñoz, M. A.; Sorlí, J. V.; Martínez-González, M. A. Prevention of Diabetes with Mediterranean Diets: A Subgroup Analysis of a Randomized Trial. Ann. Intern. Med. 2014, 160 (1), 1–10. https://doi.org/10.7326/M13-1725.

(48)    Álvarez-Pérez, J.; Sánchez-Villegas, A.; Díaz-Benítez, E. M.; Ruano-Rodríguez, C.; Corella, D.; Martínez-González, M. Á.; Estruch, R.; Salas-Salvadó, J.; Serra-Majem, L.; PREDIMED Study Investigators. Influence of a Mediterranean Dietary Pattern on Body Fat Distribution: Results of the PREDIMED-Canarias Intervention Randomized Trial. J. Am. Coll. Nutr. 2016, 35 (6), 568–580. https://doi.org/10.1080/07315724.2015.1102102.

(49)    Razquin, C.; Martinez, J. A.; Martinez-Gonzalez, M. A.; Mitjavila, M. T.; Estruch, R.; Marti, A. A 3 Years Follow-up of a Mediterranean Diet Rich in Virgin Olive Oil Is Associated with High Plasma Antioxidant Capacity and Reduced Body Weight Gain. Eur. J. Clin. Nutr. 2009, 63 (12), 1387–1393. https://doi.org/10.1038/ejcn.2009.106.

(50)    Martínez-Lapiscina, E. H.; Clavero, P.; Toledo, E.; Estruch, R.; Salas-Salvadó, J.; San Julián, B.; Sanchez-Tainta, A.; Ros, E.; Valls-Pedret, C.; Martinez-Gonzalez, M. Á. Mediterranean Diet Improves Cognition: The PREDIMED-NAVARRA Randomised Trial. J. Neurol. Neurosurg. Psychiatry 2013, 84 (12), 1318–1325. https://doi.org/10.1136/jnnp-2012-304792.

(51)    Toledo, E.; Salas-Salvadó, J.; Donat-Vargas, C.; Buil-Cosiales, P.; Estruch, R.; Ros, E.; Corella, D.; Fitó, M.; Hu, F. B.; Arós, F.; Gómez-Gracia, E.; Romaguera, D.; Ortega-Calvo, M.; Serra-Majem, L.; Pintó, X.; Schröder, H.; Basora, J.; Sorlí, J. V.; Bulló, M.; Serra-Mir, M.; Martínez-González, M. A. Mediterranean Diet and Invasive Breast Cancer Risk Among Women at High Cardiovascular Risk in the PREDIMED Trial: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175 (11), 1752–1760. https://doi.org/10.1001/jamainternmed.2015.4838.

(52)    Rumawas, M. E.; Meigs, J. B.; Dwyer, J. T.; McKeown, N. M.; Jacques, P. F. Mediterranean-Style Dietary Pattern, Reduced Risk of Metabolic Syndrome Traits, and Incidence in the Framingham Offspring Cohort. Am. J. Clin. Nutr. 2009, 90 (6), 1608–1614. https://doi.org/10.3945/ajcn.2009.27908.

(53)    Ghosh, T. S.; Rampelli, S.; Jeffery, I. B.; Santoro, A.; Neto, M.; Capri, M.; Giampieri, E.; Jennings, A.; Candela, M.; Turroni, S.; Zoetendal, E. G.; Hermes, G. D. A.; Elodie, C.; Meunier, N.; Brugere, C. M.; Pujos-Guillot, E.; Berendsen, A. M.; De Groot, L. C. P. G. M.; Feskins, E. J. M.; Kaluza, J.; Pietruszka, B.; Bielak, M. J.; Comte, B.; Maijo-Ferre, M.; Nicoletti, C.; De Vos, W. M.; Fairweather-Tait, S.; Cassidy, A.; Brigidi, P.; Franceschi, C.; O’Toole, P. W. Mediterranean Diet Intervention Alters the Gut Microbiome in Older People Reducing Frailty and Improving Health Status: The NU-AGE 1-Year Dietary Intervention across Five European Countries. Gut 2020. https://doi.org/10.1136/gutjnl-2019-319654.

(54)    Esposito, K.; Marfella, R.; Ciotola, M.; Di Palo, C.; Giugliano, F.; Giugliano, G.; D’Armiento, M.; D’Andrea, F.; Giugliano, D. Effect of a Mediterranean-Style Diet on Endothelial Dysfunction and Markers of Vascular Inflammation in the Metabolic Syndrome: A Randomized Trial. JAMA 2004, 292 (12), 1440–1446. https://doi.org/10.1001/jama.292.12.1440.

(55)    Estruch, R.; Martínez-González, M. A.; Corella, D.; Salas-Salvadó, J.; Ruiz-Gutiérrez, V.; Covas, M. I.; Fiol, M.; Gómez-Gracia, E.; López-Sabater, M. C.; Vinyoles, E.; Arós, F.; Conde, M.; Lahoz, C.; Lapetra, J.; Sáez, G.; Ros, E.; PREDIMED Study Investigators. Effects of a Mediterranean-Style Diet on Cardiovascular Risk Factors: A Randomized Trial. Ann. Intern. Med. 2006, 145 (1), 1–11. https://doi.org/10.7326/0003-4819-145-1-200607040-00004.

(56)    Esposito, K.; Maiorino, M. I.; Bellastella, G.; Chiodini, P.; Panagiotakos, D.; Giugliano, D. A Journey into a Mediterranean Diet and Type 2 Diabetes: A Systematic Review with Meta-Analyses. BMJ Open 2015, 5 (8), e008222. https://doi.org/10.1136/bmjopen-2015-008222.

(57)    Liyanage, T.; Ninomiya, T.; Wang, A.; Neal, B.; Jun, M.; Wong, M. G.; Jardine, M.; Hillis, G. S.; Perkovic, V. Effects of the Mediterranean Diet on Cardiovascular Outcomes-A Systematic Review and Meta-Analysis. PloS One 2016, 11 (8), e0159252. https://doi.org/10.1371/journal.pone.0159252.

(58)    Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean Diet and Multiple Health Outcomes: An Umbrella Review of Meta-Analyses of Observational Studies and Randomised Trials. Eur. J. Clin. Nutr. 2018, 72 (1), 30–43. https://doi.org/10.1038/ejcn.2017.58.

(59)    Casas, R.; Urpi-Sardà, M.; Sacanella, E.; Arranz, S.; Corella, D.; Castañer, O.; Lamuela-Raventós, R.-M.; Salas-Salvadó, J.; Lapetra, J.; Portillo, M. P.; Estruch, R. Anti-Inflammatory Effects of the Mediterranean Diet in the Early and Late Stages of Atheroma Plaque Development. Mediators Inflamm. 2017, 2017. https://doi.org/10.1155/2017/3674390.

(60)    Ikeda, M.; Ikeda-Sagara, M.; Okada, T.; Clement, P.; Urade, Y.; Nagai, T.; Sugiyama, T.; Yoshioka, T.; Honda, K.; Inoué, S. Brain Oxidation Is an Initial Process in Sleep Induction. Neuroscience 2005, 130 (4), 1029–1040. https://doi.org/10.1016/j.neuroscience.2004.09.057.

(61)    Mittler, R.; Vanderauwera, S.; Suzuki, N.; Miller, G.; Tognetti, V. B.; Vandepoele, K.; Gollery, M.; Shulaev, V.; Van Breusegem, F. ROS Signaling: The New Wave? Trends Plant Sci. 2011, 16 (6), 300–309. https://doi.org/10.1016/j.tplants.2011.03.007.

(62)    Schieber, M.; Chandel, N. S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. CB 2014, 24 (10), R453-462. https://doi.org/10.1016/j.cub.2014.03.034.

(63)    Hill, V. M.; O’Connor, R. M.; Sissoko, G. B.; Irobunda, I. S.; Leong, S.; Canman, J. C.; Stavropoulos, N.; Shirasu-Hiza, M. A Bidirectional Relationship between Sleep and Oxidative Stress in Drosophila. PLoS Biol. 2018, 16 (7). https://doi.org/10.1371/journal.pbio.2005206.

(64)    Besedovsky, L.; Lange, T.; Haack, M. The Sleep-Immune Crosstalk in Health and Disease. Physiol. Rev. 2019, 99 (3), 1325–1380. https://doi.org/10.1152/physrev.00010.2018.

(65)    Irwin, M. R.; Olmstead, R.; Carroll, J. E. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation. Biol. Psychiatry 2016, 80 (1), 40–52. https://doi.org/10.1016/j.biopsych.2015.05.014.

(66)    Hurtado-Alvarado, G.; Domínguez-Salazar, E.; Pavon, L.; Velázquez-Moctezuma, J.; Gómez-González, B. Blood-Brain Barrier Disruption Induced by Chronic Sleep Loss: Low-Grade Inflammation May Be the Link. J. Immunol. Res. 2016, 2016. https://doi.org/10.1155/2016/4576012.

(67)    Patel, S. R.; Zhu, X.; Storfer-Isser, A.; Mehra, R.; Jenny, N. S.; Tracy, R.; Redline, S. Sleep Duration and Biomarkers of Inflammation. Sleep 2009, 32 (2), 200–204. https://doi.org/10.1093/sleep/32.2.200.

(68)    Vgontzas, A. N.; Papanicolaou, D. A.; Bixler, E. O.; Kales, A.; Tyson, K.; Chrousos, G. P. Elevation of Plasma Cytokines in Disorders of Excessive Daytime Sleepiness: Role of Sleep Disturbance and Obesity. J. Clin. Endocrinol. Metab. 1997, 82 (5), 1313–1316. https://doi.org/10.1210/jcem.82.5.3950.

(69)    Touitou, Y.; Reinberg, A.; Touitou, D. Association between Light at Night, Melatonin Secretion, Sleep Deprivation, and the Internal Clock: Health Impacts and Mechanisms of Circadian Disruption. Life Sci. 2017, 173, 94–106. https://doi.org/10.1016/j.lfs.2017.02.008.

(70)    Leproult, R.; Holmbäck, U.; Van Cauter, E. Circadian Misalignment Augments Markers of Insulin Resistance and Inflammation, Independently of Sleep Loss. Diabetes 2014, 63 (6), 1860–1869. https://doi.org/10.2337/db13-1546.

(71)    Lunn, R. M.; Blask, D. E.; Coogan, A. N.; Figueiro, M. G.; Gorman, M. R.; Hall, J. E.; Hansen, J.; Nelson, R. J.; Panda, S.; Smolensky, M. H.; Stevens, R. G.; Turek, F. W.; Vermeulen, R.; Carreón, T.; Caruso, C. C.; Lawson, C. C.; Thayer, K. A.; Twery, M. J.; Ewens, A. D.; Garner, S. C.; Schwingl, P. J.; Boyd, W. A. Health Consequences of Electric Lighting Practices in the Modern World: A Report on the National Toxicology Program’s Workshop on Shift Work at Night, Artificial Light at Night, and Circadian Disruption. Sci. Total Environ. 2017, 607–608, 1073–1084. https://doi.org/10.1016/j.scitotenv.2017.07.056.

(72)    Picard, M.; McEwen, B. S. Psychological Stress and Mitochondria: A Conceptual Framework. Psychosom. Med. 2018, 80 (2), 126–140. https://doi.org/10.1097/PSY.0000000000000544.

(73)    Magistretti, P. J.; Allaman, I. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging. Neuron 2015, 86 (4), 883–901. https://doi.org/10.1016/j.neuron.2015.03.035.

(74)    Cobley, J. N.; Fiorello, M. L.; Bailey, D. M. 13 Reasons Why the Brain Is Susceptible to Oxidative Stress. Redox Biol. 2018, 15, 490–503. https://doi.org/10.1016/j.redox.2018.01.008.

(75)    Youdim, M. B. H.; Edmondson, D.; Tipton, K. F. The Therapeutic Potential of Monoamine Oxidase Inhibitors. Nat. Rev. Neurosci. 2006, 7 (4), 295–309. https://doi.org/10.1038/nrn1883.

(76)    Booth, D. M.; Enyedi, B.; Geiszt, M.; Várnai, P.; Hajnóczky, G. Redox Nanodomains Are Induced by and Control Calcium Signaling at the ER-Mitochondrial Interface. Mol. Cell 2016, 63 (2), 240–248. https://doi.org/10.1016/j.molcel.2016.05.040.

(77)    Markham, A.; Bains, R.; Franklin, P.; Spedding, M. Changes in Mitochondrial Function Are Pivotal in Neurodegenerative and Psychiatric Disorders: How Important Is BDNF? Br. J. Pharmacol. 2014, 171 (8), 2206–2229. https://doi.org/10.1111/bph.12531.

(78)    Ng, F.; Berk, M.; Dean, O.; Bush, A. I. Oxidative Stress in Psychiatric Disorders: Evidence Base and Therapeutic Implications. Int. J. Neuropsychopharmacol. 2008, 11 (6), 851–876. https://doi.org/10.1017/S1461145707008401.

(79)    Salim, S.; Asghar, M.; Chugh, G.; Taneja, M.; Xia, Z.; Saha, K. Oxidative Stress: A Potential Recipe for Anxiety, Hypertension and Insulin Resistance. Brain Res. 2010, 1359, 178–185. https://doi.org/10.1016/j.brainres.2010.08.093.

(80)    L, T.; G, A. Mitochondrial Dysfunction in Psychiatric Morbidity: Current Evidence and Therapeutic Prospects. Neuropsychiatr. Dis. Treat. 2015, 11. https://doi.org/10.2147/NDT.S70346.

(81)    Machado-Vieira, R.; Andreazza, A. C.; Viale, C. I.; Zanatto, V.; Cereser, V.; da Silva Vargas, R.; Kapczinski, F.; Portela, L. V.; Souza, D. O.; Salvador, M.; Gentil, V. Oxidative Stress Parameters in Unmedicated and Treated Bipolar Subjects during Initial Manic Episode: A Possible Role for Lithium Antioxidant Effects. Neurosci. Lett. 2007, 421 (1), 33–36. https://doi.org/10.1016/j.neulet.2007.05.016.

(82)    Maes, M.; Fišar, Z.; Medina, M.; Scapagnini, G.; Nowak, G.; Berk, M. New Drug Targets in Depression: Inflammatory, Cell-Mediated Immune, Oxidative and Nitrosative Stress, Mitochondrial, Antioxidant, and Neuroprogressive Pathways. And New Drug Candidates–Nrf2 Activators and GSK-3 Inhibitors. Inflammopharmacology 2012, 20 (3), 127–150. https://doi.org/10.1007/s10787-011-0111-7.

(83)    Curti, C.; Mingatto, F. E.; Polizello, A. C.; Galastri, L. O.; Uyemura, S. A.; Santos, A. C. Fluoxetine Interacts with the Lipid Bilayer of the Inner Membrane in Isolated Rat Brain Mitochondria, Inhibiting Electron Transport and F1F0-ATPase Activity. Mol. Cell. Biochem. 1999, 199 (1–2), 103–109. https://doi.org/10.1023/a:1006912010550.

(84)    Bhasin, M. K.; Dusek, J. A.; Chang, B.-H.; Joseph, M. G.; Denninger, J. W.; Fricchione, G. L.; Benson, H.; Libermann, T. A. Relaxation Response Induces Temporal Transcriptome Changes in Energy Metabolism, Insulin Secretion and Inflammatory Pathways. PloS One 2013, 8 (5), e62817. https://doi.org/10.1371/journal.pone.0062817.

(85)    Ruparelia, N.; Chai, J. T.; Fisher, E. A.; Choudhury, R. P. Inflammatory Processes in Cardiovascular Disease: A Route to Targeted Therapies. Nat. Rev. Cardiol. 2017, 14 (3), 133–144. https://doi.org/10.1038/nrcardio.2016.185.

(86)    Peluso, I.; Morabito, G.; Urban, L.; Ioannone, F.; Serafini, M. Oxidative Stress in Atherosclerosis Development: The Central Role of LDL and Oxidative Burst. Endocr. Metab. Immune Disord. Drug Targets 2012, 12 (4), 351–360. https://doi.org/10.2174/187153012803832602.

(87)    Kattoor, A. J.; Pothineni, N. V. K.; Palagiri, D.; Mehta, J. L. Oxidative Stress in Atherosclerosis. Curr. Atheroscler. Rep. 2017, 19 (11), 42. https://doi.org/10.1007/s11883-017-0678-6.

(88)    Gao, S.; Zhao, D.; Wang, M.; Zhao, F.; Han, X.; Qi, Y.; Liu, J. Association Between Circulating Oxidized LDL and Atherosclerotic Cardiovascular Disease: A Meta-Analysis of Observational Studies. Can. J. Cardiol. 2017, 33 (12), 1624–1632. https://doi.org/10.1016/j.cjca.2017.07.015.

(89)    Kattoor, A. J.; Kanuri, S. H.; Mehta, J. L. Role of Ox-LDL and LOX-1 in Atherogenesis. Curr. Med. Chem. 2019, 26 (9), 1693–1700. https://doi.org/10.2174/0929867325666180508100950.

(90)    Frei, B.; England, L.; Ames, B. N. Ascorbate Is an Outstanding Antioxidant in Human Blood Plasma. Proc. Natl. Acad. Sci. U. S. A. 1989, 86 (16), 6377–6381.

(91)    Padayatty, S. J.; Levine, M. Vitamin C Physiology: The Known and the Unknown and Goldilocks. Oral Dis. 2016, 22 (6), 463–493. https://doi.org/10.1111/odi.12446.

(92)    Schleicher, R. L.; Carroll, M. D.; Ford, E. S.; Lacher, D. A. Serum Vitamin C and the Prevalence of Vitamin C Deficiency in the United States: 2003-2004 National Health and Nutrition Examination Survey (NHANES). Am. J. Clin. Nutr. 2009, 90 (5), 1252–1263. https://doi.org/10.3945/ajcn.2008.27016.

(93)    Raynaud-Simon, A.; Cohen-Bittan, J.; Gouronnec, A.; Pautas, E.; Senet, P.; Verny, M.; Boddaert, J. Scurvy in Hospitalized Elderly Patients. J. Nutr. Health Aging 2010, 14 (6), 407–410. https://doi.org/10.1007/s12603-010-0032-y.

(94)    Lykkesfeldt, J.; Christen, S.; Wallock, L. M.; Chang, H. H.; Jacob, R. A.; Ames, B. N. Ascorbate Is Depleted by Smoking and Repleted by Moderate Supplementation: A Study in Male Smokers and Nonsmokers with Matched Dietary Antioxidant Intakes. Am. J. Clin. Nutr. 2000, 71 (2), 530–536. https://doi.org/10.1093/ajcn/71.2.530.

(95)    Tu, H.; Li, H.; Wang, Y.; Niyyati, M.; Wang, Y.; Leshin, J.; Levine, M. Low Red Blood Cell Vitamin C Concentrations Induce Red Blood Cell Fragility: A Link to Diabetes Via Glucose, Glucose Transporters, and Dehydroascorbic Acid. EBioMedicine 2015, 2 (11), 1735–1750. https://doi.org/10.1016/j.ebiom.2015.09.049.

(96)    Ashor, A. W.; Werner, A. D.; Lara, J.; Willis, N. D.; Mathers, J. C.; Siervo, M. Effects of Vitamin C Supplementation on Glycaemic Control: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Eur. J. Clin. Nutr. 2017, 71 (12), 1371–1380. https://doi.org/10.1038/ejcn.2017.24.

(97)    Frei, B.; Birlouez-Aragon, I.; Lykkesfeldt, J. Authors’ Perspective: What Is the Optimum Intake of Vitamin C in Humans? Crit. Rev. Food Sci. Nutr. 2012, 52 (9), 815–829. https://doi.org/10.1080/10408398.2011.649149.

(98)    Levine, M.; Conry-Cantilena, C.; Wang, Y.; Welch, R. W.; Washko, P. W.; Dhariwal, K. R.; Park, J. B.; Lazarev, A.; Graumlich, J. F.; King, J.; Cantilena, L. R. Vitamin C Pharmacokinetics in Healthy Volunteers: Evidence for a Recommended Dietary Allowance. Proc. Natl. Acad. Sci. U. S. A. 1996, 93 (8), 3704–3709. https://doi.org/10.1073/pnas.93.8.3704.

(99)    Johnston, C. S.; Luo, B. Comparison of the Absorption and Excretion of Three Commercially Available Sources of Vitamin C. J. Am. Diet. Assoc. 1994, 94 (7), 779–781.

(100) Viscovich, M.; Lykkesfeldt, J.; Poulsen, H. E. Vitamin C Pharmacokinetics of Plain and Slow Release Formulations in Smokers. Clin. Nutr. Edinb. Scotl. 2004, 23 (5), 1043–1050. https://doi.org/10.1016/j.clnu.2004.01.007.

(101) Davis, J. L.; Paris, H. L.; Beals, J. W.; Binns, S. E.; Giordano, G. R.; Scalzo, R. L.; Schweder, M. M.; Blair, E.; Bell, C. Liposomal-Encapsulated Ascorbic Acid: Influence on Vitamin C Bioavailability and Capacity to Protect Against Ischemia-Reperfusion Injury. Nutr. Metab. Insights 2016, 9, 25–30. https://doi.org/10.4137/NMI.S39764.

(102) Song, J.; Kwon, O.; Chen, S.; Daruwala, R.; Eck, P.; Park, J. B.; Levine, M. Flavonoid Inhibition of Sodium-Dependent Vitamin C Transporter 1 (SVCT1) and Glucose Transporter Isoform 2 (GLUT2), Intestinal Transporters for Vitamin C and Glucose. J. Biol. Chem. 2002, 277 (18), 15252–15260. https://doi.org/10.1074/jbc.M110496200.

(103) Carr, A. C.; Bozonet, S. M.; Vissers, M. C. M. A Randomised Cross-Over Pharmacokinetic Bioavailability Study of Synthetic versus Kiwifruit-Derived Vitamin C. Nutrients 2013, 5 (11), 4451–4461. https://doi.org/10.3390/nu5114451.

(104) Azzi, A.; Ricciarelli, R.; Zingg, J. M. Non-Antioxidant Molecular Functions of Alpha-Tocopherol (Vitamin E). FEBS Lett. 2002, 519 (1–3), 8–10. https://doi.org/10.1016/s0014-5793(02)02706-0.

(105) Pédeboscq, S.; Rey, C.; Petit, M.; Harpey, C.; De Giorgi, F.; Ichas, F.; Lartigue, L. Non-Antioxidant Properties of α-Tocopherol Reduce the Anticancer Activity of Several Protein Kinase Inhibitors in Vitro. PloS One 2012, 7 (5), e36811. https://doi.org/10.1371/journal.pone.0036811.

(106) Khadangi, F.; Azzi, A. Vitamin E – The Next 100 Years. IUBMB Life 2019, 71 (4), 411–415. https://doi.org/10.1002/iub.1990.

(107) Hosomi, A.; Arita, M.; Sato, Y.; Kiyose, C.; Ueda, T.; Igarashi, O.; Arai, H.; Inoue, K. Affinity for Alpha-Tocopherol Transfer Protein as a Determinant of the Biological Activities of Vitamin E Analogs. FEBS Lett. 1997, 409 (1), 105–108. https://doi.org/10.1016/s0014-5793(97)00499-7.

(108) Miyamoto, K.; Ushijima, T. Diagnostic and Therapeutic Applications of Epigenetics. Jpn. J. Clin. Oncol. 2005, 35 (6), 293–301. https://doi.org/10.1093/jjco/hyi088.

(109) Maden, M. Retinoic Acid in the Development, Regeneration and Maintenance of the Nervous System. Nat. Rev. Neurosci. 2007, 8 (10), 755–765. https://doi.org/10.1038/nrn2212.

(110) Bar-El Dadon, S.; Reifen, R. Vitamin A and the Epigenome. Crit. Rev. Food Sci. Nutr. 2017, 57 (11), 2404–2411. https://doi.org/10.1080/10408398.2015.1060940.

(111) Miller, E. R.; Pastor-Barriuso, R.; Dalal, D.; Riemersma, R. A.; Appel, L. J.; Guallar, E. Meta-Analysis: High-Dosage Vitamin E Supplementation May Increase All-Cause Mortality. Ann. Intern. Med. 2005, 142 (1), 37–46. https://doi.org/10.7326/0003-4819-142-1-200501040-00110.

(112) Bjelakovic, G.; Nikolova, D.; Gluud, L. L.; Simonetti, R. G.; Gluud, C. Mortality in Randomized Trials of Antioxidant Supplements for Primary and Secondary Prevention: Systematic Review and Meta-Analysis. JAMA 2007, 297 (8), 842–857. https://doi.org/10.1001/jama.297.8.842.

(113) Bjelakovic, G.; Nikolova, D.; Gluud, L. L.; Simonetti, R. G.; Gluud, C. Antioxidant Supplements for Prevention of Mortality in Healthy Participants and Patients with Various Diseases. Cochrane Database Syst. Rev. 2012, No. 3, CD007176. https://doi.org/10.1002/14651858.CD007176.pub2.

(114) Bjelakovic, G.; Nikolova, D.; Gluud, C. Antioxidant Supplements and Mortality. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17 (1), 40–44. https://doi.org/10.1097/MCO.0000000000000009.

(115) Grodstein, F.; O’Brien, J.; Kang, J. H.; Dushkes, R.; Cook, N. R.; Okereke, O.; Manson, J. E.; Glynn, R. J.; Buring, J. E.; Gaziano, M.; Sesso, H. D. Long-Term Multivitamin Supplementation and Cognitive Function in Men: A Randomized Trial. Ann. Intern. Med. 2013, 159 (12), 806–814. https://doi.org/10.7326/0003-4819-159-12-201312170-00006.

(116) Graat, J. M.; Schouten, E. G.; Kok, F. J. Effect of Daily Vitamin E and Multivitamin-Mineral Supplementation on Acute Respiratory Tract Infections in Elderly Persons: A Randomized Controlled Trial. JAMA 2002, 288 (6), 715–721. https://doi.org/10.1001/jama.288.6.715.

(117) Vivekananthan, D. P.; Penn, M. S.; Sapp, S. K.; Hsu, A.; Topol, E. J. Use of Antioxidant Vitamins for the Prevention of Cardiovascular Disease: Meta-Analysis of Randomised Trials. Lancet Lond. Engl. 2003, 361 (9374), 2017–2023. https://doi.org/10.1016/S0140-6736(03)13637-9.

(118) Sesso, H. D.; Buring, J. E.; Christen, W. G.; Kurth, T.; Belanger, C.; MacFadyen, J.; Bubes, V.; Manson, J. E.; Glynn, R. J.; Gaziano, J. M. Vitamins E and C in the Prevention of Cardiovascular Disease in Men: The Physicians’ Health Study II Randomized Controlled Trial. JAMA 2008, 300 (18), 2123–2133. https://doi.org/10.1001/jama.2008.600.

(119) Klein, E. A.; Thompson, I. M.; Tangen, C. M.; Crowley, J. J.; Lucia, M. S.; Goodman, P. J.; Minasian, L.; Ford, L. G.; Parnes, H. L.; Gaziano, J. M.; Karp, D. D.; Lieber, M. M.; Walther, P. J.; Klotz, L.; Parsons, J. K.; Chin, J. L.; Darke, A. K.; Lippman, S. M.; Goodman, G. E.; Meyskens, F. L.; Baker, L. H. Vitamin E and the Risk of Prostate Cancer: Updated Results of The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2011, 306 (14), 1549–1556. https://doi.org/10.1001/jama.2011.1437.

(120) Morinobu, T.; Yoshikawa, S.; Hamamura, K.; Tamai, H. Measurement of Vitamin E Metabolites by High-Performance Liquid Chromatography during High-Dose Administration of Alpha-Tocopherol. Eur. J. Clin. Nutr. 2003, 57 (3), 410–414. https://doi.org/10.1038/sj.ejcn.1601570.

(121) Cardenas, E.; Ghosh, R. Vitamin E: A Dark Horse at the Crossroad of Cancer Management. Biochem. Pharmacol. 2013, 86 (7), 845–852. https://doi.org/10.1016/j.bcp.2013.07.018.

(122) Rodahl, K.; Moore, T. The Vitamin A Content and Toxicity of Bear and Seal Liver. Biochem. J. 1943, 37 (2), 166–168.

(123) Albanes, D.; Heinonen, O. P.; Taylor, P. R.; Virtamo, J.; Edwards, B. K.; Rautalahti, M.; Hartman, A. M.; Palmgren, J.; Freedman, L. S.; Haapakoski, J.; Barrett, M. J.; Pietinen, P.; Malila, N.; Tala, E.; Liippo, K.; Salomaa, E. R.; Tangrea, J. A.; Teppo, L.; Askin, F. B.; Taskinen, E.; Erozan, Y.; Greenwald, P.; Huttunen, J. K. Alpha-Tocopherol and Beta-Carotene Supplements and Lung Cancer Incidence in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study: Effects of Base-Line Characteristics and Study Compliance. J. Natl. Cancer Inst. 1996, 88 (21), 1560–1570. https://doi.org/10.1093/jnci/88.21.1560.

(124) Omenn, G. S.; Goodman, G. E.; Thornquist, M. D.; Balmes, J.; Cullen, M. R.; Glass, A.; Keogh, J. P.; Meyskens, F. L.; Valanis, B.; Williams, J. H.; Barnhart, S.; Cherniack, M. G.; Brodkin, C. A.; Hammar, S. Risk Factors for Lung Cancer and for Intervention Effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J. Natl. Cancer Inst. 1996, 88 (21), 1550–1559. https://doi.org/10.1093/jnci/88.21.1550.

(125) Baron, J. A.; Cole, B. F.; Mott, L.; Haile, R.; Grau, M.; Church, T. R.; Beck, G. J.; Greenberg, E. R. Neoplastic and Antineoplastic Effects of Beta-Carotene on Colorectal Adenoma Recurrence: Results of a Randomized Trial. J Natl Cancer Inst 2003, 95 (10), 717–722. https://doi.org/10.1093/jnci/95.10.717.

(126) Druesne-Pecollo, N.; Latino-Martel, P.; Norat, T.; Barrandon, E.; Bertrais, S.; Galan, P.; Hercberg, S. Beta-Carotene Supplementation and Cancer Risk: A Systematic Review and Metaanalysis of Randomized Controlled Trials. Int. J. Cancer 2010, 127 (1), 172–184. https://doi.org/10.1002/ijc.25008.

(127) EFSA Panel on Food Additives and Nutrient Sources added to Food. Statement on the Safety of β-Carotene Use in Heavy Smokers. EFSA J. 2012, 10 (12), 2953. https://doi.org/10.2903/j.efsa.2012.2953.

(128) Arts, I. C. W.; Hollman, P. C. H. Polyphenols and Disease Risk in Epidemiologic Studies. Am. J. Clin. Nutr. 2005, 81 (1 Suppl), 317S-325S. https://doi.org/10.1093/ajcn/81.1.317S.

(129) Mathers, J.; Fraser, J. A.; McMahon, M.; Saunders, R. D. C.; Hayes, J. D.; McLellan, L. I. Antioxidant and Cytoprotective Responses to Redox Stress. Biochem. Soc. Symp. 2004, No. 71, 157–176. https://doi.org/10.1042/bss0710157.

(130) Sykiotis, G. P.; Bohmann, D. Stress-Activated Cap’n’collar Transcription Factors in Aging and Human Disease. Sci. Signal. 2010, 3 (112), re3. https://doi.org/10.1126/scisignal.3112re3.

(131) Ibanez, F.; Bang, W. Y.; Lombardini, L.; Cisneros-Zevallos, L. Solving the Controversy of Healthier Organic Fruit: Leaf Wounding Triggers Distant Gene Expression Response of Polyphenol Biosynthesis in Strawberry Fruit (Fragaria x Ananassa). Sci. Rep. 2019, 9. https://doi.org/10.1038/s41598-019-55033-w.

(132) Parr, A. J.; Bolwell, G. P. Phenols in the Plant and in Man. The Potential for Possible Nutritional Enhancement of the Diet by Modifying the Phenols Content or Profile. J. Sci. Food Agric. 2000, 80 (7), 985–1012. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.0.CO;2-7.

(133) Brawley, P.; Duffield, J. C. The Pharmacology of Hallucinogens. Pharmacol. Rev. 1972, 24 (1), 31–66.

(134) L, M.; Em, M.; Cj, V.; F, L. Bioavailability of Dietary Polyphenols and Gut Microbiota Metabolism: Antimicrobial Properties. BioMed Res. Int. 2015, 2015. https://doi.org/10.1155/2015/905215.

(135) Corrêa, T. A. F.; Rogero, M. M.; Hassimotto, N. M. A.; Lajolo, F. M. The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Front. Nutr. 2019, 6, 188. https://doi.org/10.3389/fnut.2019.00188.

(136) Parkar, S. G.; Stevenson, D. E.; Skinner, M. A. The Potential Influence of Fruit Polyphenols on Colonic Microflora and Human Gut Health. Int. J. Food Microbiol. 2008, 124 (3), 295–298. https://doi.org/10.1016/j.ijfoodmicro.2008.03.017.

(137) van Duynhoven, J.; Vaughan, E. E.; Jacobs, D. M.; Kemperman, R. A.; van Velzen, E. J. J.; Gross, G.; Roger, L. C.; Possemiers, S.; Smilde, A. K.; Doré, J.; Westerhuis, J. A.; Van de Wiele, T. Metabolic Fate of Polyphenols in the Human Superorganism. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 Suppl 1, 4531–4538. https://doi.org/10.1073/pnas.1000098107.

(138) Leeming, E. R.; Johnson, A. J.; Spector, T. D.; Le Roy, C. I. Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients 2019, 11 (12). https://doi.org/10.3390/nu11122862.

(139) Li, M.; Ma, G.; Han, L.; Li, J. Regulating Effect of Tea Polyphenols on Endothelin, Intracellular Calcium Concentration, and Mitochondrial Membrane Potential in Vascular Endothelial Cells Injured by Angiotensin II. Ann. Vasc. Surg. 2014, 28 (4), 1016–1022. https://doi.org/10.1016/j.avsg.2013.11.003.

(140) Serino, A.; Salazar, G. Protective Role of Polyphenols against Vascular Inflammation, Aging and Cardiovascular Disease. Nutrients 2018, 11 (1). https://doi.org/10.3390/nu11010053.

(141) Najjar, R. S.; Feresin, R. G. Protective Role of Polyphenols in Heart Failure: Molecular Targets and Cellular Mechanisms Underlying Their Therapeutic Potential. Int. J. Mol. Sci. 2021, 22 (4), 1668. https://doi.org/10.3390/ijms22041668.

(142) Stevens, J. F.; Revel, J. S.; Maier, C. S. Mitochondria-Centric Review of Polyphenol Bioactivity in Cancer Models. Antioxid. Redox Signal. 2018, 29 (16), 1589–1611. https://doi.org/10.1089/ars.2017.7404.

(143) Yammine, A.; Zarrouk, A.; Nury, T.; Vejux, A.; Latruffe, N.; Vervandier-Fasseur, D.; Samadi, M.; Mackrill, J. J.; Greige-Gerges, H.; Auezova, L.; Lizard, G. Prevention by Dietary Polyphenols (Resveratrol, Quercetin, Apigenin) Against 7-Ketocholesterol-Induced Oxiapoptophagy in Neuronal N2a Cells: Potential Interest for the Treatment of Neurodegenerative and Age-Related Diseases. Cells 2020, 9 (11), E2346. https://doi.org/10.3390/cells9112346.

(144) Bhagani, H.; Nasser, S. A.; Dakroub, A.; El-Yazbi, A. F.; Eid, A. A.; Kobeissy, F.; Pintus, G.; Eid, A. H. The Mitochondria: A Target of Polyphenols in the Treatment of Diabetic Cardiomyopathy. Int. J. Mol. Sci. 2020, 21 (14), 4962. https://doi.org/10.3390/ijms21144962.

(145) Naoi, M.; Wu, Y.; Shamoto-Nagai, M.; Maruyama, W. Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. Int. J. Mol. Sci. 2019, 20 (10), E2451. https://doi.org/10.3390/ijms20102451.

(146) Teixeira, J.; Chavarria, D.; Borges, F.; Wojtczak, L.; Wieckowski, M. R.; Karkucinska-Wieckowska, A.; Oliveira, P. J. Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease. Curr. Med. Chem. 2019, 26 (19), 3376–3406. https://doi.org/10.2174/0929867324666170529101810.

(147) Mthembu, S. X. H.; Dludla, P. V.; Ziqubu, K.; Nyambuya, T. M.; Kappo, A. P.; Madoroba, E.; Nyawo, T. A.; Nkambule, B. B.; Silvestri, S.; Muller, C. J. F.; Mazibuko-Mbeje, S. E. The Potential Role of Polyphenols in Modulating Mitochondrial Bioenergetics within the Skeletal Muscle: A Systematic Review of Preclinical Models. Molecules 2021, 26 (9), 2791. https://doi.org/10.3390/molecules26092791.

(148) Chodari, L.; Dilsiz Aytemir, M.; Vahedi, P.; Alipour, M.; Vahed, S. Z.; Khatibi, S. M. H.; Ahmadian, E.; Ardalan, M.; Eftekhari, A. Targeting Mitochondrial Biogenesis with Polyphenol Compounds. Oxid. Med. Cell. Longev. 2021, 2021, 4946711. https://doi.org/10.1155/2021/4946711.

(149) Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; Geny, B.; Laakso, M.; Puigserver, P.; Auwerx, J. Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1alpha. Cell 2006, 127 (6), 1109–1122. https://doi.org/10.1016/j.cell.2006.11.013.

(150) Scarpulla, R. C. Metabolic Control of Mitochondrial Biogenesis through the PGC-1 Family Regulatory Network. Biochim. Biophys. Acta 2011, 1813 (7), 1269–1278. https://doi.org/10.1016/j.bbamcr.2010.09.019.

(151) de Oliveira, M. R.; Nabavi, S. M.; Braidy, N.; Setzer, W. N.; Ahmed, T.; Nabavi, S. F. Quercetin and the Mitochondria: A Mechanistic View. Biotechnol. Adv. 2016, 34 (5), 532–549. https://doi.org/10.1016/j.biotechadv.2015.12.014.

(152) Shi, W.; Li, L.; Ding, Y.; Yang, K.; Chen, Z.; Fan, X.; Jiang, S.; Guan, Y.; Liu, Z.; Xu, D.; Wu, L. The Critical Role of Epigallocatechin Gallate in Regulating Mitochondrial Metabolism. Future Med. Chem. 2018, 10 (7), 795–809. https://doi.org/10.4155/fmc-2017-0204.

(153) Barrea, L.; Tarantino, G.; Somma, C. D.; Muscogiuri, G.; Macchia, P. E.; Falco, A.; Colao, A.; Savastano, S. Adherence to the Mediterranean Diet and Circulating Levels of Sirtuin 4 in Obese Patients: A Novel Association. Oxid. Med. Cell. Longev. 2017, 2017. https://doi.org/10.1155/2017/6101254.

(154) Martucci, M.; Ostan, R.; Biondi, F.; Bellavista, E.; Fabbri, C.; Bertarelli, C.; Salvioli, S.; Capri, M.; Franceschi, C.; Santoro, A. Mediterranean Diet and Inflammaging within the Hormesis Paradigm. Nutr. Rev. 2017, 75 (6), 442–455. https://doi.org/10.1093/nutrit/nux013.

(155) Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 1998, 56 (11), 317–333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x.

(156) Hooper, L.; Kay, C.; Abdelhamid, A.; Kroon, P. A.; Cohn, J. S.; Rimm, E. B.; Cassidy, A. Effects of Chocolate, Cocoa, and Flavan-3-Ols on Cardiovascular Health: A Systematic Review and Meta-Analysis of Randomized Trials. Am. J. Clin. Nutr. 2012, 95 (3), 740–751. https://doi.org/10.3945/ajcn.111.023457.

(157) Lin, X.; Zhang, I.; Li, A.; Manson, J. E.; Sesso, H. D.; Wang, L.; Liu, S. Cocoa Flavanol Intake and Biomarkers for Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Nutr. 2016, 146 (11), 2325–2333. https://doi.org/10.3945/jn.116.237644.

(158) Ried, K.; Fakler, P.; Stocks, N. P. Effect of Cocoa on Blood Pressure. Cochrane Database Syst. Rev. 2017, 4 (4), CD008893. https://doi.org/10.1002/14651858.CD008893.pub3.

(159) Koyama, Y.; Tomoda, Y.; Kato, M.; Ashihara, H. Metabolism of Purine Bases, Nucleosides and Alkaloids in Theobromine-Forming Theobroma Cacao Leaves. Plant Physiol. Biochem. 2003, 41, 977–984. https://doi.org/10.1016/j.plaphy.2003.07.002.

(160) Cova, I.; Leta, V.; Mariani, C.; Pantoni, L.; Pomati, S. Exploring Cocoa Properties: Is Theobromine a Cognitive Modulator? Psychopharmacology (Berl.) 2019, 236 (2), 561–572. https://doi.org/10.1007/s00213-019-5172-0.

(161) Smit, H. J.; Blackburn, R. J. Reinforcing Effects of Caffeine and Theobromine as Found in Chocolate. Psychopharmacology (Berl.) 2005, 181 (1), 101–106. https://doi.org/10.1007/s00213-005-2209-3.

(162) Kovács, Z.; Juhász, G.; Dobolyi, A.; Bobest, M.; Papp, V.; Takáts, L.; Kékesi, K. A. Gender- and Age-Dependent Changes in Nucleoside Levels in the Cerebral Cortex and White Matter of the Human Brain. Brain Res. Bull. 2010, 81 (6), 579–584. https://doi.org/10.1016/j.brainresbull.2009.10.010.

(163) Lorenz, M. Cellular Targets for the Beneficial Actions of Tea Polyphenols. Am. J. Clin. Nutr. 2013, 98 (6 Suppl), 1642S-1650S. https://doi.org/10.3945/ajcn.113.058230.

(164) Faria, A.; Meireles, M.; Fernandes, I.; Santos-Buelga, C.; Gonzalez-Manzano, S.; Dueñas, M.; de Freitas, V.; Mateus, N.; Calhau, C. Flavonoid Metabolites Transport across a Human BBB Model. Food Chem. 2014, 149, 190–196. https://doi.org/10.1016/j.foodchem.2013.10.095.

(165) Unno, K.; Pervin, M.; Nakagawa, A.; Iguchi, K.; Hara, A.; Takagaki, A.; Nanjo, F.; Minami, A.; Nakamura, Y. Blood-Brain Barrier Permeability of Green Tea Catechin Metabolites and Their Neuritogenic Activity in Human Neuroblastoma SH-SY5Y Cells. Mol. Nutr. Food Res. 2017, 61 (12). https://doi.org/10.1002/mnfr.201700294.

(166) Pervin, M.; Unno, K.; Takagaki, A.; Isemura, M.; Nakamura, Y. Function of Green Tea Catechins in the Brain: Epigallocatechin Gallate and Its Metabolites. Int. J. Mol. Sci. 2019, 20 (15). https://doi.org/10.3390/ijms20153630.

(167) Mancini, E.; Beglinger, C.; Drewe, J.; Zanchi, D.; Lang, U. E.; Borgwardt, S. Green Tea Effects on Cognition, Mood and Human Brain Function: A Systematic Review. Phytomedicine Int. J. Phytother. Phytopharm. 2017, 34, 26–37. https://doi.org/10.1016/j.phymed.2017.07.008.

(168) Baptista, J. A. B.; Tavares, J. F. da P.; Carvalho, R. C. B. Comparison of Catechins and Aromas among Different Green Teas Using HPLC/SPME-GC. Food Res. Int. 1998, 31 (10), 729–736. https://doi.org/10.1016/S0963-9969(99)00052-6.

(169) Nagle, D. G.; Ferreira, D.; Zhou, Y.-D. Epigallocatechin-3-Gallate (EGCG): Chemical and Biomedical Perspectives. Phytochemistry 2006, 67 (17), 1849–1855. https://doi.org/10.1016/j.phytochem.2006.06.020.

(170) Labbé, D.; Tremblay, A.; Bazinet, L. Effect of Brewing Temperature and Duration on Green Tea Catechin Solubilization: Basis for Production of EGC and EGCG-Enriched Fractions. Sep. Purif. Technol. 2006, 49 (1), 1–9. https://doi.org/10.1016/j.seppur.2005.07.038.

(171) 60 Millions de Consommateurs. Analyses de thés verts et thés noirs. 60 Millions de Consommateurs. 2017.

(172) Li, N.; Taylor, L. S.; Mauer, L. J. Degradation Kinetics of Catechins in Green Tea Powder: Effects of Temperature and Relative Humidity. J. Agric. Food Chem. 2011, 59 (11), 6082–6090. https://doi.org/10.1021/jf200203n.

(173) Lawson, L. D. Garlic: A Review of Its Medicinal Effects and Indicated Active Compounds. In Phytomedicines of Europe; ACS Symposium Series; American Chemical Society, 1998; Vol. 691, pp 176–209. https://doi.org/10.1021/bk-1998-0691.ch014.

(174) Sendl, A. Allium Sativum and Allium Ursinum: Part 1 Chemistry, Analysis, History, Botany. Phytomedicine Int. J. Phytother. Phytopharm. 1995, 1 (4), 323–339. https://doi.org/10.1016/S0944-7113(11)80011-5.

(175) Sivam, G. P. Protection against Helicobacter Pylori and Other Bacterial Infections by Garlic. J. Nutr. 2001, 131 (3), 1106S-1108S. https://doi.org/10.1093/jn/131.3.1106S.

(176) Lau, B. H. S. Suppression of LDL Oxidation by Garlic Compounds Is a Possible Mechanism of Cardiovascular Health Benefit. J. Nutr. 2006, 136 (3), 765S-768S. https://doi.org/10.1093/jn/136.3.765S.

(177) Kyung, K. H. Antimicrobial Properties of Allium Species. Curr. Opin. Biotechnol. 2012, 23 (2), 142–147. https://doi.org/10.1016/j.copbio.2011.08.004.

(178) Ried, K.; Frank, O. R.; Stocks, N. P. Aged Garlic Extract Reduces Blood Pressure in Hypertensives: A Dose-Response Trial. Eur. J. Clin. Nutr. 2013, 67 (1), 64–70. https://doi.org/10.1038/ejcn.2012.178.

(179) Majewski, M. Allium Sativum: Facts and Myths Regarding Human Health. Rocz. Panstw. Zakl. Hig. 2014, 65 (1), 1–8.

(180) Wu, W.-K.; Panyod, S.; Ho, C.-T.; Kuo, C.-H.; Wu, M.-S.; Sheen, L.-Y. Dietary Allicin Reduces Transformation of L-Carnitine to TMAO through Impact on Gut Microbiota. 2015.

(181) Hou, L.; Liu, Y.; Zhang, Y. Garlic Intake Lowers Fasting Blood Glucose: Meta-Analysis of Randomized Controlled Trials. Asia Pac. J. Clin. Nutr. 2015, 24 (4), 575–582. https://doi.org/10.6133/apjcn.2015.24.4.15.

(182) Ried, K. Garlic Lowers Blood Pressure in Hypertensive Individuals, Regulates Serum Cholesterol, and Stimulates Immunity: An Updated Meta-Analysis and Review. J. Nutr. 2016, 146 (2), 389S-396S. https://doi.org/10.3945/jn.114.202192.

(183) Liu, Q.; Meng, X.; Li, Y.; Zhao, C.-N.; Tang, G.-Y.; Li, H.-B. Antibacterial and Antifungal Activities of Spices. Int. J. Mol. Sci. 2017, 18 (6). https://doi.org/10.3390/ijms18061283.

(184) Lang, A.; Lahav, M.; Sakhnini, E.; Barshack, I.; Fidder, H. H.; Avidan, B.; Bardan, E.; Hershkoviz, R.; Bar-Meir, S.; Chowers, Y. Allicin Inhibits Spontaneous and TNF-Alpha Induced Secretion of Proinflammatory Cytokines and Chemokines from Intestinal Epithelial Cells. Clin. Nutr. Edinb. Scotl. 2004, 23 (5), 1199–1208. https://doi.org/10.1016/j.clnu.2004.03.011.

(185) Rojas, P.; Serrano-García, N.; Medina-Campos, O. N.; Pedraza-Chaverri, J.; Maldonado, P. D.; Ruiz-Sánchez, E. S-Allylcysteine, a Garlic Compound, Protects against Oxidative Stress in 1-Methyl-4-Phenylpyridinium-Induced Parkinsonism in Mice. J. Nutr. Biochem. 2011, 22 (10), 937–944. https://doi.org/10.1016/j.jnutbio.2010.08.005.

(186) Wang, Y.; Guan, M.; Zhao, X.; Li, X. Effects of Garlic Polysaccharide on Alcoholic Liver Fibrosis and Intestinal Microflora in Mice. Pharm. Biol. 2018, 56 (1), 325–332. https://doi.org/10.1080/13880209.2018.1479868.

(187) Lawson, L. D.; Hunsaker, S. M. Allicin Bioavailability and Bioequivalence from Garlic Supplements and Garlic Foods. Nutrients 2018, 10 (7). https://doi.org/10.3390/nu10070812.

(188) Borrelli, F.; Capasso, R.; Izzo, A. A. Garlic (Allium Sativum L.): Adverse Effects and Drug Interactions in Humans. Mol. Nutr. Food Res. 2007, 51 (11), 1386–1397. https://doi.org/10.1002/mnfr.200700072.

(189) Del Carmen Martínez-Ballesta, M.; Moreno, D. A.; Carvajal, M. The Physiological Importance of Glucosinolates on Plant Response to Abiotic Stress in Brassica. Int. J. Mol. Sci. 2013, 14 (6), 11607–11625. https://doi.org/10.3390/ijms140611607.

(190) Fahey, J. W.; Talalay, P. Antioxidant Functions of Sulforaphane: A Potent Inducer of Phase II Detoxication Enzymes. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 1999, 37 (9–10), 973–979. https://doi.org/10.1016/s0278-6915(99)00082-4.

(191) Petri, N.; Tannergren, C.; Holst, B.; Mellon, F. A.; Bao, Y.; Plumb, G. W.; Bacon, J.; O’Leary, K. A.; Kroon, P. A.; Knutson, L.; Forsell, P.; Eriksson, T.; Lennernas, H.; Williamson, G. Absorption/Metabolism of Sulforaphane and Quercetin, and Regulation of Phase II Enzymes, in Human Jejunum in Vivo. Drug Metab. Dispos. Biol. Fate Chem. 2003, 31 (6), 805–813. https://doi.org/10.1124/dmd.31.6.805.

(192) Mahn, A.; Reyes, A. An Overview of Health-Promoting Compounds of Broccoli (Brassica Oleracea Var. Italica) and the Effect of Processing. Food Sci. Technol. Int. Cienc. Tecnol. Los Aliment. Int. 2012, 18 (6), 503–514. https://doi.org/10.1177/1082013211433073.

(193) Gharehbeglou, P.; Jafari, S. M. Antioxidant Components of Brassica Vegetables Including Turnip and the Influence of Processing and Storage on Their Anti-Oxidative Properties. Curr. Med. Chem. 2019, 26 (24), 4559–4572. https://doi.org/10.2174/0929867325666181115111040.

(194) Shapiro, T. A.; Fahey, J. W.; Wade, K. L.; Stephenson, K. K.; Talalay, P. Human Metabolism and Excretion of Cancer Chemoprotective Glucosinolates and Isothiocyanates of Cruciferous Vegetables. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 1998, 7 (12), 1091–1100.

(195) Kaczmarek, J. L.; Liu, X.; Charron, C. S.; Novotny, J. A.; Jeffery, E. H.; Seifried, H. E.; Ross, S. A.; Miller, M. J.; Swanson, K. S.; Holscher, H. D. Broccoli Consumption Affects the Human Gastrointestinal Microbiota. J. Nutr. Biochem. 2019, 63, 27–34. https://doi.org/10.1016/j.jnutbio.2018.09.015.

(196) Riccardi, G.; Rivellese, A. A.; Giacco, R. Role of Glycemic Index and Glycemic Load in the Healthy State, in Prediabetes, and in Diabetes. Am. J. Clin. Nutr. 2008, 87 (1), 269S-274S. https://doi.org/10.1093/ajcn/87.1.269S.

(197) OMS. Diabète. Who.int. https://www.who.int/fr/news-room/fact-sheets/detail/diabetes (accessed 2020-01-05).

(198) Schwingshackl, L.; Hoffmann, G. Long-Term Effects of Low Glycemic Index/Load vs. High Glycemic Index/Load Diets on Parameters of Obesity and Obesity-Associated Risks: A Systematic Review and Meta-Analysis. Nutr. Metab. Cardiovasc. Dis. NMCD 2013, 23 (8), 699–706. https://doi.org/10.1016/j.numecd.2013.04.008.

(199) Buyken, A. E.; Goletzke, J.; Joslowski, G.; Felbick, A.; Cheng, G.; Herder, C.; Brand-Miller, J. C. Association between Carbohydrate Quality and Inflammatory Markers: Systematic Review of Observational and Interventional Studies. Am. J. Clin. Nutr. 2014, 99 (4), 813–833. https://doi.org/10.3945/ajcn.113.074252.

(200) Galarregui, C.; Zulet, M. Á.; Cantero, I.; Marín-Alejandre, B. A.; Monreal, J. I.; Elorz, M.; Benito-Boillos, A.; Herrero, J. I.; Tur, J. A.; Abete, I.; Martínez, J. A. Interplay of Glycemic Index, Glycemic Load, and Dietary Antioxidant Capacity with Insulin Resistance in Subjects with a Cardiometabolic Risk Profile. Int. J. Mol. Sci. 2018, 19 (11), E3662. https://doi.org/10.3390/ijms19113662.

(201) Teymoori, F.; Farhadnejad, H.; Moslehi, N.; Mirmiran, P.; Mokhtari, E.; Azizi, F. The Association of Dietary Insulin and Glycemic Indices with the Risk of Type 2 Diabetes. Clin. Nutr. Edinb. Scotl. 2021, 40 (4), 2138–2144. https://doi.org/10.1016/j.clnu.2020.09.038.

(202) Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F. A. Association between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovasc. Diabetol. 2018, 17 (1), 122. https://doi.org/10.1186/s12933-018-0762-4.

(203) Adeva-Andany, M. M.; Martínez-Rodríguez, J.; González-Lucán, M.; Fernández-Fernández, C.; Castro-Quintela, E. Insulin Resistance Is a Cardiovascular Risk Factor in Humans. Diabetes Metab. Syndr. 2019, 13 (2), 1449–1455. https://doi.org/10.1016/j.dsx.2019.02.023.

(204) Brownlee, M. Biochemistry and Molecular Cell Biology of Diabetic Complications. Nature 2001, 414 (6865), 813–820. https://doi.org/10.1038/414813a.

(205) Vlassara, H.; Cai, W.; Crandall, J.; Goldberg, T.; Oberstein, R.; Dardaine, V.; Peppa, M.; Rayfield, E. J. Inflammatory Mediators Are Induced by Dietary Glycotoxins, a Major Risk Factor for Diabetic Angiopathy. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (24), 15596–15601. https://doi.org/10.1073/pnas.242407999.

(206) Basta, G.; Schmidt, A. M.; De Caterina, R. Advanced Glycation End Products and Vascular Inflammation: Implications for Accelerated Atherosclerosis in Diabetes. Cardiovasc. Res. 2004, 63 (4), 582–592. https://doi.org/10.1016/j.cardiores.2004.05.001.

(207) Loeser, R. F.; Yammani, R. R.; Carlson, C. S.; Chen, H.; Cole, A.; Im, H.-J.; Bursch, L. S.; Yan, S. D. Articular Chondrocytes Express the Receptor for Advanced Glycation End Products: Potential Role in Osteoarthritis. Arthritis Rheum. 2005, 52 (8), 2376–2385. https://doi.org/10.1002/art.21199.

(208) Poulsen, M. W.; Hedegaard, R. V.; Andersen, J. M.; de Courten, B.; Bügel, S.; Nielsen, J.; Skibsted, L. H.; Dragsted, L. O. Advanced Glycation Endproducts in Food and Their Effects on Health. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2013, 60, 10–37. https://doi.org/10.1016/j.fct.2013.06.052.

(209) Cordain, L.; Eades, M. R.; Eades, M. D. Hyperinsulinemic Diseases of Civilization: More than Just Syndrome X. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2003, 136 (1), 95–112. https://doi.org/10.1016/s1095-6433(03)00011-4.

(210) Çerman, A. A.; Aktaş, E.; Altunay, İ. K.; Arıcı, J. E.; Tulunay, A.; Ozturk, F. Y. Dietary Glycemic Factors, Insulin Resistance, and Adiponectin Levels in Acne Vulgaris. J. Am. Acad. Dermatol. 2016, 75 (1), 155–162. https://doi.org/10.1016/j.jaad.2016.02.1220.

(211) Galvis, V.; López-Jaramillo, P.; Tello, A.; Castellanos-Castellanos, Y. A.; Camacho, P. A.; Cohen, D. D.; Gómez-Arbeláez, D.; Merayo-Lloves, J. Is Myopia Another Clinical Manifestation of Insulin Resistance? Med. Hypotheses 2016, 90, 32–40. https://doi.org/10.1016/j.mehy.2016.02.006.

(212) Burris, J.; Shikany, J. M.; Rietkerk, W.; Woolf, K. A Low Glycemic Index and Glycemic Load Diet Decreases Insulin-like Growth Factor-1 among Adults with Moderate and Severe Acne: A Short-Duration, 2-Week Randomized Controlled Trial. J. Acad. Nutr. Diet. 2018, 118 (10), 1874–1885. https://doi.org/10.1016/j.jand.2018.02.009.

(213) Berticat, C.; Mamouni, S.; Ciais, A.; Villain, M.; Raymond, M.; Daien, V. Probability of Myopia in Children with High Refined Carbohydrates Consumption in France. BMC Ophthalmol. 2020, 20 (1), 337. https://doi.org/10.1186/s12886-020-01602-x.

(214) Zeng, X.; Xie, Y.-J.; Liu, Y.-T.; Long, S.-L.; Mo, Z.-C. Polycystic Ovarian Syndrome: Correlation between Hyperandrogenism, Insulin Resistance and Obesity. Clin. Chim. Acta Int. J. Clin. Chem. 2020, 502, 214–221. https://doi.org/10.1016/j.cca.2019.11.003.

(215) Deng, L.; Gui, Z.; Zhao, L.; Wang, J.; Shen, L. Diabetes Mellitus and the Incidence of Colorectal Cancer: An Updated Systematic Review and Meta-Analysis. Dig. Dis. Sci. 2012, 57 (6), 1576–1585. https://doi.org/10.1007/s10620-012-2055-1.

(216) Boyle, P.; Boniol, M.; Koechlin, A.; Robertson, C.; Valentini, F.; Coppens, K.; Fairley, L.-L.; Boniol, M.; Zheng, T.; Zhang, Y.; Pasterk, M.; Smans, M.; Curado, M. P.; Mullie, P.; Gandini, S.; Bota, M.; Bolli, G. B.; Rosenstock, J.; Autier, P. Diabetes and Breast Cancer Risk: A Meta-Analysis. Br. J. Cancer 2012, 107 (9), 1608–1617. https://doi.org/10.1038/bjc.2012.414.

(217) Perry, R. J.; Shulman, G. I. Mechanistic Links between Obesity, Insulin, and Cancer. Trends Cancer 2020, 6 (2), 75–78. https://doi.org/10.1016/j.trecan.2019.12.003.

(218) Montgomery, M. K.; Turner, N. Mitochondrial Dysfunction and Insulin Resistance: An Update. Endocr. Connect. 2014, 4 (1), R1–R15. https://doi.org/10.1530/EC-14-0092.

(219) Gonzalez-Franquesa, A.; Patti, M.-E. Insulin Resistance and Mitochondrial Dysfunction. Adv. Exp. Med. Biol. 2017, 982, 465–520. https://doi.org/10.1007/978-3-319-55330-6_25.

(220) Sangwung, P.; Petersen, K. F.; Shulman, G. I.; Knowles, J. W. Mitochondrial Dysfunction, Insulin Resistance, and Potential Genetic Implications. Endocrinology 2020, 161 (4), bqaa017. https://doi.org/10.1210/endocr/bqaa017.

(221) Goto, Y.; Nonaka, I.; Horai, S. A Mutation in the TRNA(Leu)(UUR) Gene Associated with the MELAS Subgroup of Mitochondrial Encephalomyopathies. Nature 1990, 348 (6302), 651–653. https://doi.org/10.1038/348651a0.

(222) Huoponen, K.; Vilkki, J.; Aula, P.; Nikoskelainen, E. K.; Savontaus, M. L. A New MtDNA Mutation Associated with Leber Hereditary Optic Neuroretinopathy. Am. J. Hum. Genet. 1991, 48 (6), 1147–1153.

(223) van den Ouweland, J. M.; Lemkes, H. H.; Trembath, R. C.; Ross, R.; Velho, G.; Cohen, D.; Froguel, P.; Maassen, J. A. Maternally Inherited Diabetes and Deafness Is a Distinct Subtype of Diabetes and Associates with a Single Point Mutation in the Mitochondrial TRNA(Leu(UUR)) Gene. Diabetes 1994, 43 (6), 746–751. https://doi.org/10.2337/diab.43.6.746.

(224) Trounce, I.; Neill, S.; Wallace, D. C. Cytoplasmic Transfer of the MtDNA Nt 8993 T–>G (ATP6) Point Mutation Associated with Leigh Syndrome into MtDNA-Less Cells Demonstrates Cosegregation with a Decrease in State III Respiration and ADP/O Ratio. Proc. Natl. Acad. Sci. U. S. A. 1994, 91 (18), 8334–8338. https://doi.org/10.1073/pnas.91.18.8334.

(225) Jørgensen, M. E.; Bjerregaard, P.; Gyntelberg, F.; Borch‐Johnsen, K. Prevalence of the Metabolic Syndrome among the Inuit in Greenland. A Comparison between Two Proposed Definitions. Diabet. Med. 2004, 21 (11), 1237–1242. https://doi.org/10.1111/j.1464-5491.2004.01294.x.

(226) G, D.; M, C.; P, F.; V, R.; S, P. The Impact of Dietary Changes among the Inuit of Nunavik (Canada): A Socioeconomic Assessment of Possible Public Health Recommendations Dealing with Food Contamination. Risk Anal. Off. Publ. Soc. Risk Anal. 2004, 24 (4), 1007–1018. https://doi.org/10.1111/j.0272-4332.2004.00503.x.

(227) Collins, S. A.; Sinclair, G.; McIntosh, S.; Bamforth, F.; Thompson, R.; Sobol, I.; Osborne, G.; Corriveau, A.; Santos, M.; Hanley, B.; Greenberg, C. R.; Vallance, H.; Arbour, L. Carnitine Palmitoyltransferase 1A (CPT1A) P479L Prevalence in Live Newborns in Yukon, Northwest Territories, and Nunavut. Mol. Genet. Metab. 2010, 101 (2–3), 200–204. https://doi.org/10.1016/j.ymgme.2010.07.013.

(228) Château-Degat, M.-L.; Dewailly, E.; Charbonneau, G.; Laouan-Sidi, E. A.; Tremblay, A.; Egeland, G. M. Obesity Risks: Towards an Emerging Inuit Pattern. Int. J. Circumpolar Health 2011, 70 (2), 166–177. https://doi.org/10.3402/ijch.v70i2.17802.

(229) Clemente, F. J.; Cardona, A.; Inchley, C. E.; Peter, B. M.; Jacobs, G.; Pagani, L.; Lawson, D. J.; Antão, T.; Vicente, M.; Mitt, M.; DeGiorgio, M.; Faltyskova, Z.; Xue, Y.; Ayub, Q.; Szpak, M.; Mägi, R.; Eriksson, A.; Manica, A.; Raghavan, M.; Rasmussen, M.; Rasmussen, S.; Willerslev, E.; Vidal-Puig, A.; Tyler-Smith, C.; Villems, R.; Nielsen, R.; Metspalu, M.; Malyarchuk, B.; Derenko, M.; Kivisild, T. A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations. Am. J. Hum. Genet. 2014, 95 (5), 584–589. https://doi.org/10.1016/j.ajhg.2014.09.016.

(230) Grant, R. W.; Dixit, V. D. Adipose Tissue as an Immunological Organ. Obes. Silver Spring Md 2015, 23 (3), 512–518. https://doi.org/10.1002/oby.21003.

(231) Pellegrinelli, V.; Carobbio, S.; Vidal-Puig, A. Adipose Tissue Plasticity: How Fat Depots Respond Differently to Pathophysiological Cues. Diabetologia 2016, 59, 1075–1088. https://doi.org/10.1007/s00125-016-3933-4.

(232) Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G. A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20 (9). https://doi.org/10.3390/ijms20092358.

(233) Pradhan, A. D.; Manson, J. E.; Rifai, N.; Buring, J. E.; Ridker, P. M. C-Reactive Protein, Interleukin 6, and Risk of Developing Type 2 Diabetes Mellitus. JAMA 2001, 286 (3), 327–334. https://doi.org/10.1001/jama.286.3.327.

(234) Wen, H.; Gris, D.; Lei, Y.; Jha, S.; Zhang, L.; Huang, M. T.-H.; Brickey, W. J.; Ting, J. P.-Y. Fatty Acid-Induced NLRP3-ASC Inflammasome Activation Interferes with Insulin Signaling. Nat. Immunol. 2011, 12 (5), 408–415. https://doi.org/10.1038/ni.2022.

(235) Liu, C.; Feng, X.; Li, Q.; Wang, Y.; Li, Q.; Hua, M. Adiponectin, TNF-α and Inflammatory Cytokines and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Cytokine 2016, 86, 100–109. https://doi.org/10.1016/j.cyto.2016.06.028.

(236) Bedogni, G.; Miglioli, L.; Masutti, F.; Tiribelli, C.; Marchesini, G.; Bellentani, S. Prevalence of and Risk Factors for Nonalcoholic Fatty Liver Disease: The Dionysos Nutrition and Liver Study. Hepatol. Baltim. Md 2005, 42 (1), 44–52. https://doi.org/10.1002/hep.20734.

(237) Younossi, Z. M.; Koenig, A. B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of Nonalcoholic Fatty Liver Disease-Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatol. Baltim. Md 2016, 64 (1), 73–84. https://doi.org/10.1002/hep.28431.

(238) van der Poorten, D.; Milner, K.-L.; Hui, J.; Hodge, A.; Trenell, M. I.; Kench, J. G.; London, R.; Peduto, T.; Chisholm, D. J.; George, J. Visceral Fat: A Key Mediator of Steatohepatitis in Metabolic Liver Disease. Hepatol. Baltim. Md 2008, 48 (2), 449–457. https://doi.org/10.1002/hep.22350.

(239) Gaggini, M.; Morelli, M.; Buzzigoli, E.; DeFronzo, R. A.; Bugianesi, E.; Gastaldelli, A. Non-Alcoholic Fatty Liver Disease (NAFLD) and Its Connection with Insulin Resistance, Dyslipidemia, Atherosclerosis and Coronary Heart Disease. Nutrients 2013, 5 (5), 1544–1560. https://doi.org/10.3390/nu5051544.

(240) Hotamisligil, G. S. Inflammation and Metabolic Disorders. Nature 2006, 444 (7121), 860–867. https://doi.org/10.1038/nature05485.

(241) Kotas, M. E.; Medzhitov, R. Homeostasis, Inflammation, and Disease Susceptibility. Cell 2015, 160 (5), 816–827. https://doi.org/10.1016/j.cell.2015.02.010.

(242) Hotamisligil, G. S. Inflammation, Metaflammation and Immunometabolic Disorders. Nature 2017, 542 (7640), 177–185. https://doi.org/10.1038/nature21363.

(243) Ellulu, M. S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and Inflammation: The Linking Mechanism and the Complications. Arch. Med. Sci. AMS 2017, 13 (4), 851–863. https://doi.org/10.5114/aoms.2016.58928.

(244) Vandanmagsar, B.; Youm, Y.-H.; Ravussin, A.; Galgani, J. E.; Stadler, K.; Mynatt, R. L.; Ravussin, E.; Stephens, J. M.; Dixit, V. D. The NLRP3 Inflammasome Instigates Obesity-Induced Inflammation and Insulin Resistance. Nat. Med. 2011, 17 (2), 179–188. https://doi.org/10.1038/nm.2279.

(245) Kim, J.; Nam, J.-H. Insight into the Relationship between Obesity-Induced Low-Level Chronic Inflammation and COVID-19 Infection. Int. J. Obes. 2020, 44 (7), 1541–1542. https://doi.org/10.1038/s41366-020-0602-y.

(246) Luzi, L.; Radaelli, M. G. Influenza and Obesity: Its Odd Relationship and the Lessons for COVID-19 Pandemic. Acta Diabetol. 2020, 1–6. https://doi.org/10.1007/s00592-020-01522-8.

(247) Teff, K. L.; Elliott, S. S.; Tschöp, M.; Kieffer, T. J.; Rader, D.; Heiman, M.; Townsend, R. R.; Keim, N. L.; D’Alessio, D.; Havel, P. J. Dietary Fructose Reduces Circulating Insulin and Leptin, Attenuates Postprandial Suppression of Ghrelin, and Increases Triglycerides in Women. J. Clin. Endocrinol. Metab. 2004, 89 (6), 2963–2972. https://doi.org/10.1210/jc.2003-031855.

(248) Chung, M.; Ma, J.; Patel, K.; Berger, S.; Lau, J.; Lichtenstein, A. H. Fructose, High-Fructose Corn Syrup, Sucrose, and Nonalcoholic Fatty Liver Disease or Indexes of Liver Health: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2014, 100 (3), 833–849. https://doi.org/10.3945/ajcn.114.086314.

(249) Ter Horst, K. W.; Schene, M. R.; Holman, R.; Romijn, J. A.; Serlie, M. J. Effect of Fructose Consumption on Insulin Sensitivity in Nondiabetic Subjects: A Systematic Review and Meta-Analysis of Diet-Intervention Trials. Am. J. Clin. Nutr. 2016, 104 (6), 1562–1576. https://doi.org/10.3945/ajcn.116.137786.

(250) Softic, S.; Meyer, J. G.; Wang, G.-X.; Gupta, M. K.; Batista, T. M.; Lauritzen, H. P. M. M.; Fujisaka, S.; Serra, D.; Herrero, L.; Willoughby, J.; Fitzgerald, K.; Ilkayeva, O.; Newgard, C. B.; Gibson, B. W.; Schilling, B.; Cohen, D. E.; Kahn, C. R. Dietary Sugars Alter Hepatic Fatty Acid Oxidation via Transcriptional and Post-Translational Modifications of Mitochondrial Proteins. Cell Metab. 2019, 30 (4), 735-753.e4. https://doi.org/10.1016/j.cmet.2019.09.003.

(251) Softic, S.; Stanhope, K. L.; Boucher, J.; Divanovic, S.; Lanaspa, M. A.; Johnson, R. J.; Kahn, C. R. Fructose and Hepatic Insulin Resistance. Crit. Rev. Clin. Lab. Sci. 2020, 57 (5), 308–322. https://doi.org/10.1080/10408363.2019.1711360.

(252) Meerman, R.; Brown, A. J. When Somebody Loses Weight, Where Does the Fat Go? BMJ 2014, 349, g7257. https://doi.org/10.1136/bmj.g7257.

(253) García-Arroyo, F. E.; Cristóbal, M.; Arellano-Buendía, A. S.; Osorio, H.; Tapia, E.; Soto, V.; Madero, M.; Lanaspa, M. A.; Roncal-Jiménez, C.; Bankir, L.; Johnson, R. J.; Sánchez-Lozada, L.-G. Rehydration with Soft Drink-like Beverages Exacerbates Dehydration and Worsens Dehydration-Associated Renal Injury. Am. J. Physiol. – Regul. Integr. Comp. Physiol. 2016, 311 (1), R57–R65. https://doi.org/10.1152/ajpregu.00354.2015.

(254) Jang, C.; Wada, S.; Yang, S.; Gosis, B.; Zeng, X.; Zhang, Z.; Shen, Y.; Lee, G.; Arany, Z.; Rabinowitz, J. D. The Small Intestine Shields the Liver from Fructose-Induced Steatosis. Nat. Metab. 2020, 2 (7), 586–593. https://doi.org/10.1038/s42255-020-0222-9.

(255) Johnson, R. J.; Segal, M. S.; Sautin, Y.; Nakagawa, T.; Feig, D. I.; Kang, D.-H.; Gersch, M. S.; Benner, S.; Sánchez-Lozada, L. G. Potential Role of Sugar (Fructose) in the Epidemic of Hypertension, Obesity and the Metabolic Syndrome, Diabetes, Kidney Disease, and Cardiovascular Disease. Am. J. Clin. Nutr. 2007, 86 (4), 899–906. https://doi.org/10.1093/ajcn/86.4.899.

(256) Sievenpiper, J. L.; de Souza, R. J.; Mirrahimi, A.; Yu, M. E.; Carleton, A. J.; Beyene, J.; Chiavaroli, L.; Di Buono, M.; Jenkins, A. L.; Leiter, L. A.; Wolever, T. M. S.; Kendall, C. W. C.; Jenkins, D. J. A. Effect of Fructose on Body Weight in Controlled Feeding Trials: A Systematic Review and Meta-Analysis. Ann. Intern. Med. 2012, 156 (4), 291–304. https://doi.org/10.7326/0003-4819-156-4-201202210-00007.

(257) Zhang, Y. H.; An, T.; Zhang, R. C.; Zhou, Q.; Huang, Y.; Zhang, J. Very High Fructose Intake Increases Serum LDL-Cholesterol and Total Cholesterol: A Meta-Analysis of Controlled Feeding Trials. J. Nutr. 2013, 143 (9), 1391–1398. https://doi.org/10.3945/jn.113.175323.

(258) Chiu, S.; Sievenpiper, J. L.; de Souza, R. J.; Cozma, A. I.; Mirrahimi, A.; Carleton, A. J.; Ha, V.; Di Buono, M.; Jenkins, A. L.; Leiter, L. A.; Wolever, T. M. S.; Don-Wauchope, A. C.; Beyene, J.; Kendall, C. W. C.; Jenkins, D. J. A. Effect of Fructose on Markers of Non-Alcoholic Fatty Liver Disease (NAFLD): A Systematic Review and Meta-Analysis of Controlled Feeding Trials. Eur. J. Clin. Nutr. 2014, 68 (4), 416–423. https://doi.org/10.1038/ejcn.2014.8.

(259) Tsilas, C. S.; de Souza, R. J.; Mejia, S. B.; Mirrahimi, A.; Cozma, A. I.; Jayalath, V. H.; Ha, V.; Tawfik, R.; Di Buono, M.; Jenkins, A. L.; Leiter, L. A.; Wolever, T. M. S.; Beyene, J.; Khan, T.; Kendall, C. W. C.; Jenkins, D. J. A.; Sievenpiper, J. L. Relation of Total Sugars, Fructose and Sucrose with Incident Type 2 Diabetes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. CMAJ Can. Med. Assoc. J. J. Assoc. Medicale Can. 2017, 189 (20), E711–E720. https://doi.org/10.1503/cmaj.160706.

(260) Caliceti, C.; Calabria, D.; Roda, A.; Cicero, A. F. G. Fructose Intake, Serum Uric Acid, and Cardiometabolic Disorders: A Critical Review. Nutrients 2017, 9 (4), E395. https://doi.org/10.3390/nu9040395.

(261) Lambertz, J.; Weiskirchen, S.; Landert, S.; Weiskirchen, R. Fructose: A Dietary Sugar in Crosstalk with Microbiota Contributing to the Development and Progression of Non-Alcoholic Liver Disease. Front. Immunol. 2017, 8, 1159. https://doi.org/10.3389/fimmu.2017.01159.

(262) Krause, N.; Wegner, A. Fructose Metabolism in Cancer. Cells 2020, 9 (12), E2635. https://doi.org/10.3390/cells9122635.

(263) Jang, C.; Hui, S.; Lu, W.; Cowan, A. J.; Morscher, R. J.; Lee, G.; Liu, W.; Tesz, G. J.; Birnbaum, M. J.; Rabinowitz, J. D. The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids. Cell Metab. 2018, 27 (2), 351-361.e3. https://doi.org/10.1016/j.cmet.2017.12.016.

(264) Muraki, I.; Imamura, F.; Manson, J. E.; Hu, F. B.; Willett, W. C.; Dam, R. M. van; Sun, Q. Fruit Consumption and Risk of Type 2 Diabetes: Results from Three Prospective Longitudinal Cohort Studies. BMJ 2013, 347, f5001. https://doi.org/10.1136/bmj.f5001.

(265) Weber, K. S.; Simon, M.-C.; Strassburger, K.; Markgraf, D. F.; Buyken, A. E.; Szendroedi, J.; Müssig, K.; Roden, M. Habitual Fructose Intake Relates to Insulin Sensitivity and Fatty Liver Index in Recent-Onset Type 2 Diabetes Patients and Individuals without Diabetes. Nutrients 2018, 10 (6). https://doi.org/10.3390/nu10060774.

(266) Tajima, R.; Kimura, T.; Enomoto, A.; Saito, A.; Kobayashi, S.; Masuda, K.; Iida, K. No Association between Fruits or Vegetables and Non-Alcoholic Fatty Liver Disease in Middle-Aged Men and Women. Nutr. Burbank Los Angel. Cty. Calif 2019, 61, 119–124. https://doi.org/10.1016/j.nut.2018.10.016.

(267) Kim, S.-A.; Shin, S. Fruit and Vegetable Consumption and Non-Alcoholic Fatty Liver Disease among Korean Adults: A Prospective Cohort Study. J. Epidemiol. Community Health 2020, 74 (12), 1035–1042. https://doi.org/10.1136/jech-2020-214568.

(268) Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S. N.; Forouhi, N. G. Consumption of Sugar Sweetened Beverages, Artificially Sweetened Beverages, and Fruit Juice and Incidence of Type 2 Diabetes: Systematic Review, Meta-Analysis, and Estimation of Population Attributable Fraction. BMJ 2015, 351, h3576. https://doi.org/10.1136/bmj.h3576.

(269) ANSES. Apports En Acides Gras de La Population Vivant En France et Comparaison Aux Apports Nutritionnels Conseillés Définis En 2010, 2015.

(270) Weill, P.; Plissonneau, C.; Legrand, P.; Rioux, V.; Thibault, R. May Omega-3 Fatty Acid Dietary Supplementation Help Reduce Severe Complications in Covid-19 Patients? Biochimie 2020, 179, 275–280. https://doi.org/10.1016/j.biochi.2020.09.003.

(271) Gerster, H. Can Adults Adequately Convert Alpha-Linolenic Acid (18:3n-3) to Eicosapentaenoic Acid (20:5n-3) and Docosahexaenoic Acid (22:6n-3)? Int. J. Vitam. Nutr. Res. Int. Z. Vitam.- Ernahrungsforschung J. Int. Vitaminol. Nutr. 1998, 68 (3), 159–173.

(272) ANSES. Etude Individuelle Nationale Des Consommations Alimentaires 3 (INCA3); Rapport d’expertise collective; ANSES, 2017.

(273) ANSES. Les lipides. Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail. https://www.anses.fr/fr/content/les-lipides (accessed 2020-08-07).

(274) Papanikolaou, Y.; Brooks, J.; Reider, C.; Fulgoni, V. L. U.S. Adults Are Not Meeting Recommended Levels for Fish and Omega-3 Fatty Acid Intake: Results of an Analysis Using Observational Data from NHANES 2003-2008. Nutr. J. 2014, 13, 31. https://doi.org/10.1186/1475-2891-13-31.

(275) Burdge, G. C.; Wootton, S. A. Conversion of Alpha-Linolenic Acid to Eicosapentaenoic, Docosapentaenoic and Docosahexaenoic Acids in Young Women. Br. J. Nutr. 2002, 88 (4), 411–420. https://doi.org/10.1079/BJN2002689.

(276) Brenna, J. T. Efficiency of Conversion of Alpha-Linolenic Acid to Long Chain n-3 Fatty Acids in Man. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5 (2), 127–132. https://doi.org/10.1097/00075197-200203000-00002.

(277) Arterburn, L. M.; Hall, E. B.; Oken, H. Distribution, Interconversion, and Dose Response of n-3 Fatty Acids in Humans. Am. J. Clin. Nutr. 2006, 83 (6 Suppl), 1467S-1476S. https://doi.org/10.1093/ajcn/83.6.1467S.

(278) Horrobin, D. F. Loss of Delta-6-Desaturase Activity as a Key Factor in Aging. Med. Hypotheses 1981, 7 (9), 1211–1220. https://doi.org/10.1016/0306-9877(81)90064-5.

(279) Arshad, Z.; Rezapour-Firouzi, S.; Ebrahimifar, M.; Mosavi Jarrahi, A.; Mohammadian, M. Association of Delta-6-Desaturase Expression with Aggressiveness of Cancer, Diabetes Mellitus, and Multiple Sclerosis: A Narrative Review. Asian Pac. J. Cancer Prev. APJCP 2019, 20 (4), 1005–1018. https://doi.org/10.31557/APJCP.2019.20.4.1005.

(280) Araya, J.; Rodrigo, R.; Pettinelli, P.; Araya, A. V.; Poniachik, J.; Videla, L. A. Decreased Liver Fatty Acid Delta-6 and Delta-5 Desaturase Activity in Obese Patients. Obes. Silver Spring Md 2010, 18 (7), 1460–1463. https://doi.org/10.1038/oby.2009.379.

(281) Vessby, B. Dietary Fat, Fatty Acid Composition in Plasma and the Metabolic Syndrome. Curr. Opin. Lipidol. 2003, 14 (1), 15–19. https://doi.org/10.1097/00041433-200302000-00004.

(282) Kröger, J.; Zietemann, V.; Enzenbach, C.; Weikert, C.; Jansen, E. H.; Döring, F.; Joost, H.-G.; Boeing, H.; Schulze, M. B. Erythrocyte Membrane Phospholipid Fatty Acids, Desaturase Activity, and Dietary Fatty Acids in Relation to Risk of Type 2 Diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Am. J. Clin. Nutr. 2011, 93 (1), 127–142. https://doi.org/10.3945/ajcn.110.005447.

(283) Riezzo, G.; Ferreri, C.; Orlando, A.; Martulli, M.; D’Attoma, B.; Russo, F. Lipidomic Analysis of Fatty Acids in Erythrocytes of Coeliac Patients before and after a Gluten-Free Diet Intervention: A Comparison with Healthy Subjects. Br. J. Nutr. 2014, 112 (11), 1787–1796. https://doi.org/10.1017/S0007114514002815.

(284) Shih, P. B.; Morisseau, C.; Le, T.; Woodside, B.; German, J. B. Personalized Polyunsaturated Fatty Acids as a Potential Adjunctive Treatment for Anorexia Nervosa. Prostaglandins Other Lipid Mediat. 2017, 133, 11–19. https://doi.org/10.1016/j.prostaglandins.2017.08.010.

(285) Scaioli, E.; Liverani, E.; Belluzzi, A. The Imbalance between N-6/n-3 Polyunsaturated Fatty Acids and Inflammatory Bowel Disease: A Comprehensive Review and Future Therapeutic Perspectives. Int. J. Mol. Sci. 2017, 18 (12). https://doi.org/10.3390/ijms18122619.

(286) Wagner, A.; Simon, C.; Morio, B.; Dallongeville, J.; Ruidavets, J. B.; Haas, B.; Laillet, B.; Cottel, D.; Ferrières, J.; Arveiler, D. Omega-3 Index Levels and Associated Factors in a Middle-Aged French Population: The MONA LISA-NUT Study. Eur. J. Clin. Nutr. 2015, 69 (4), 436–441. https://doi.org/10.1038/ejcn.2014.219.

(287) Demonty, I.; Langlois, K.; Greene-Finestone, L. S.; Zoka, R.; Nguyen, L. Proportions of Long-Chain ω-3 Fatty Acids in Erythrocyte Membranes of Canadian Adults: Results from the Canadian Health Measures Survey 2012-2015. Am. J. Clin. Nutr. 2021, 113 (4), 993–1008. https://doi.org/10.1093/ajcn/nqaa401.

(288) Itariu, B. K.; Zeyda, M.; Hochbrugger, E. E.; Neuhofer, A.; Prager, G.; Schindler, K.; Bohdjalian, A.; Mascher, D.; Vangala, S.; Schranz, M.; Krebs, M.; Bischof, M. G.; Stulnig, T. M. Long-Chain n-3 PUFAs Reduce Adipose Tissue and Systemic Inflammation in Severely Obese Nondiabetic Patients: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2012, 96 (5), 1137–1149. https://doi.org/10.3945/ajcn.112.037432.

(289) Gerling, C. J.; Mukai, K.; Chabowski, A.; Heigenhauser, G. J. F.; Holloway, G. P.; Spriet, L. L.; Jannas-Vela, S. Incorporation of Omega-3 Fatty Acids Into Human Skeletal Muscle Sarcolemmal and Mitochondrial Membranes Following 12 Weeks of Fish Oil Supplementation. Front. Physiol. 2019, 10, 348. https://doi.org/10.3389/fphys.2019.00348.

(290) Halvorsen, B. L.; Blomhoff, R. Determination of Lipid Oxidation Products in Vegetable Oils and Marine Omega-3 Supplements. Food Nutr. Res. 2011, 55. https://doi.org/10.3402/fnr.v55i0.5792.

(291) Ritter, J. C. S.; Budge, S. M.; Jovica, F. Quality Analysis of Commercial Fish Oil Preparations. J. Sci. Food Agric. 2013, 93 (8), 1935–1939. https://doi.org/10.1002/jsfa.5994.

(292) Opperman, M.; Benade, S. Analysis of the Omega-3 Fatty Acid Content of South African Fish Oil Supplements: A Follow-up Study. Cardiovasc. J. Afr. 2013, 24 (8), 297–302. https://doi.org/10.5830/CVJA-2013-074.

(293) Albert, B. B.; Derraik, J. G. B.; Cameron-Smith, D.; Hofman, P. L.; Tumanov, S.; Villas-Boas, S. G.; Garg, M. L.; Cutfield, W. S. Fish Oil Supplements in New Zealand Are Highly Oxidised and Do Not Meet Label Content of N-3 PUFA. Sci. Rep. 2015, 5, 7928. https://doi.org/10.1038/srep07928.

(294) Jackowski, S. A.; Alvi, A. Z.; Mirajkar, A.; Imani, Z.; Gamalevych, Y.; Shaikh, N. A.; Jackowski, G. Oxidation Levels of North American Over-the-Counter n-3 (Omega-3) Supplements and the Influence of Supplement Formulation and Delivery Form on Evaluating Oxidative Safety. J. Nutr. Sci. 2015, 4, e30. https://doi.org/10.1017/jns.2015.21.

(295) Rundblad, A.; Holven, K. B.; Ottestad, I.; Myhrstad, M. C.; Ulven, S. M. High-Quality Fish Oil Has a More Favourable Effect than Oxidised Fish Oil on Intermediate-Density Lipoprotein and LDL Subclasses: A Randomised Controlled Trial. Br. J. Nutr. 2017, 117 (9), 1291–1298. https://doi.org/10.1017/S0007114517001167.

(296) Nazemroaya, S.; Sahari, M. A.; Rezaei, M. Effect of Frozen Storage on Fatty Acid Composition and Changes in Lipid Content of Scomberomorus Commersoni and Carcharhinus Dussumieri. J. Appl. Ichthyol. 2009, 25 (1), 91–95. https://doi.org/10.1111/j.1439-0426.2008.01176.x.

(297) Botsoglou, E.; Govaris, A.; Fletouris, D.; Botsoglou, N. Lipid Oxidation of Stored Eggs Enriched with Very Long Chain N-3 Fatty Acids, as Affected by Dietary Olive Leaves (Olea Europea L.) or α-Tocopheryl Acetate Supplementation. Food Chem. 2012, 134 (2), 1059–1068. https://doi.org/10.1016/j.foodchem.2012.03.014.

(298) Al-Saghir, S.; Thurner, K.; Wagner, K.-H.; Frisch, G.; Luf, W.; Razzazi-Fazeli, E.; Elmadfa, I. Effects of Different Cooking Procedures on Lipid Quality and Cholesterol Oxidation of Farmed Salmon Fish (Salmo Salar). J. Agric. Food Chem. 2004, 52 (16), 5290–5296. https://doi.org/10.1021/jf0495946.

(299) Kuipers, R. S.; Luxwolda, M. F.; Dijck-Brouwer, D. A. J.; Eaton, S. B.; Crawford, M. A.; Cordain, L.; Muskiet, F. A. J. Estimated Macronutrient and Fatty Acid Intakes from an East African Paleolithic Diet. Br. J. Nutr. 2010, 104 (11), 1666–1687. https://doi.org/10.1017/S0007114510002679.

(300) Ameur, A.; Enroth, S.; Johansson, A.; Zaboli, G.; Igl, W.; Johansson, A. C. V.; Rivas, M. A.; Daly, M. J.; Schmitz, G.; Hicks, A. A.; Meitinger, T.; Feuk, L.; van Duijn, C.; Oostra, B.; Pramstaller, P. P.; Rudan, I.; Wright, A. F.; Wilson, J. F.; Campbell, H.; Gyllensten, U. Genetic Adaptation of Fatty-Acid Metabolism: A Human-Specific Haplotype Increasing the Biosynthesis of Long-Chain Omega-3 and Omega-6 Fatty Acids. Am. J. Hum. Genet. 2012, 90 (5), 809–820. https://doi.org/10.1016/j.ajhg.2012.03.014.

(301) Mathias, R. A.; Fu, W.; Akey, J. M.; Ainsworth, H. C.; Torgerson, D. G.; Ruczinski, I.; Sergeant, S.; Barnes, K. C.; Chilton, F. H. Adaptive Evolution of the FADS Gene Cluster within Africa. PLOS ONE 2012, 7 (9), e44926. https://doi.org/10.1371/journal.pone.0044926.

(302) Schaeffer, L.; Gohlke, H.; Müller, M.; Heid, I. M.; Palmer, L. J.; Kompauer, I.; Demmelmair, H.; Illig, T.; Koletzko, B.; Heinrich, J. Common Genetic Variants of the FADS1 FADS2 Gene Cluster and Their Reconstructed Haplotypes Are Associated with the Fatty Acid Composition in Phospholipids. Hum. Mol. Genet. 2006, 15 (11), 1745–1756. https://doi.org/10.1093/hmg/ddl117.

(303) Kothapalli, K. S. D.; Ye, Kaixiong; Gadgil, M. S.; Carlson, S. E.; O’Brien, K. O.; Zhang, J. Y.; Park, H. G.; Ojukwu, K.; Zou, J.; Hyon, S. S.; Joshi, K. S.; Gu, Z.; Keinan, A.; Brenna, J. T. Positive Selection on a Regulatory Insertion–Deletion Polymorphism in FADS2 Influences Apparent Endogenous Synthesis of Arachidonic Acid. Mol. Biol. Evol. 2016, 33 (7), 1726–1739. https://doi.org/10.1093/molbev/msw049.

(304) Martinelli, N.; Girelli, D.; Malerba, G.; Guarini, P.; Illig, T.; Trabetti, E.; Sandri, M.; Friso, S.; Pizzolo, F.; Schaeffer, L.; Heinrich, J.; Pignatti, P. F.; Corrocher, R.; Olivieri, O. FADS Genotypes and Desaturase Activity Estimated by the Ratio of Arachidonic Acid to Linoleic Acid Are Associated with Inflammation and Coronary Artery Disease. Am. J. Clin. Nutr. 2008, 88 (4), 941–949. https://doi.org/10.1093/ajcn/88.4.941.

(305) Sergeant, S.; Hugenschmidt, C. E.; Rudock, M. E.; Ziegler, J. T.; Ivester, P.; Ainsworth, H. C.; Vaidya, D.; Case, L. D.; Langefeld, C. D.; Freedman, B. I.; Bowden, D. W.; Mathias, R. A.; Chilton, F. H. Differences in Arachidonic Acid Levels and Fatty Acid Desaturase (FADS) Gene Variants in African Americans and European Americans with Diabetes or the Metabolic Syndrome. Br. J. Nutr. 2012, 107 (4), 547–555. https://doi.org/10.1017/s0007114511003230.

(306) Zhang, B.; Jia, W.-H.; Matsuda, K.; Kweon, S.-S.; Matsuo, K.; Xiang, Y.-B.; Shin, A.; Jee, S. H.; Kim, D.-H.; Cai, Q.; Long, J.; Shi, J.; Wen, W.; Yang, G.; Zhang, Y.; Li, C.; Li, B.; Guo, Y.; Ren, Z.; Ji, B.-T.; Pan, Z.-Z.; Takahashi, A.; Shin, M.-H.; Matsuda, F.; Gao, Y.-T.; Oh, J. H.; Kim, S.; Ahn, Y.-O.; Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO); Chan, A. T.; Chang-Claude, J.; Slattery, M. L.; Colorectal Transdisciplinary (CORECT) Study; Gruber, S. B.; Schumacher, F. R.; Stenzel, S. L.; Colon Cancer Family Registry (CCFR); Casey, G.; Kim, H.-R.; Jeong, J.-Y.; Park, J. W.; Li, H.-L.; Hosono, S.; Cho, S.-H.; Kubo, M.; Shu, X.-O.; Zeng, Y.-X.; Zheng, W. Large-Scale Genetic Study in East Asians Identifies Six New Loci Associated with Colorectal Cancer Risk. Nat. Genet. 2014, 46 (6), 533–542. https://doi.org/10.1038/ng.2985.

(307) Zhang, X.; Johnson, A. D.; Hendricks, A. E.; Hwang, S.-J.; Tanriverdi, K.; Ganesh, S. K.; Smith, N. L.; Peyser, P. A.; Freedman, J. E.; O’Donnell, C. J. Genetic Associations with Expression for Genes Implicated in GWAS Studies for Atherosclerotic Cardiovascular Disease and Blood Phenotypes. Hum. Mol. Genet. 2014, 23 (3), 782–795. https://doi.org/10.1093/hmg/ddt461.

(308) Hester, A. G.; Murphy, R. C.; Uhlson, C. J.; Ivester, P.; Lee, T. C.; Sergeant, S.; Miller, L. R.; Howard, T. D.; Mathias, R. A.; Chilton, F. H. Relationship between a Common Variant in the Fatty Acid Desaturase (FADS) Cluster and Eicosanoid Generation in Humans. J. Biol. Chem. 2014, 289 (32), 22482–22489. https://doi.org/10.1074/jbc.M114.579557.

(309) Vernekar, M.; Amarapurkar, D.; Joshi, K.; Singhal, R. Gene Polymorphisms of Desaturase Enzymes of Polyunsaturated Fatty Acid Metabolism and Adiponutrin and the Increased Risk of Nonalcoholic Fatty Liver Disease. Meta Gene 2017, 11, 152–156. https://doi.org/10.1016/j.mgene.2016.08.009.

(310) Li, P.; Zhao, J.; Kothapalli, K. S. D.; Li, X.; Li, H.; Han, Y.; Mi, S.; Zhao, W.; Li, Q.; Zhang, H.; Song, Y.; Brenna, J. T.; Gao, Y. A Regulatory Insertion-Deletion Polymorphism in the FADS Gene Cluster Influences PUFA and Lipid Profiles among Chinese Adults: A Population-Based Study. Am. J. Clin. Nutr. 2018, 107 (6), 867–875. https://doi.org/10.1093/ajcn/nqy063.

(311) Lankinen, M.; Uusitupa, M.; Schwab, U. Genes and Dietary Fatty Acids in Regulation of Fatty Acid Composition of Plasma and Erythrocyte Membranes. Nutrients 2018, 10 (11), 1785. https://doi.org/10.3390/nu10111785.

(312) Fumagalli, M.; Moltke, I.; Grarup, N.; Racimo, F.; Bjerregaard, P.; Jørgensen, M. E.; Korneliussen, T. S.; Gerbault, P.; Skotte, L.; Linneberg, A.; Christensen, C.; Brandslund, I.; Jørgensen, T.; Huerta-Sánchez, E.; Schmidt, E. B.; Pedersen, O.; Hansen, T.; Albrechtsen, A.; Nielsen, R. Greenlandic Inuit Show Genetic Signatures of Diet and Climate Adaptation. Science 2015, 349 (6254), 1343–1347. https://doi.org/10.1126/science.aab2319.

(313) Hale, N. Inuit Metabolism Revisited: What Drove the Selective Sweep of CPT1a L479? Mol. Genet. Metab. 2020, 129 (4), 255–271. https://doi.org/10.1016/j.ymgme.2020.01.010.

(314) Jenkins, D. J.; Wolever, T. M.; Taylor, R. H.; Barker, H.; Fielden, H.; Baldwin, J. M.; Bowling, A. C.; Newman, H. C.; Jenkins, A. L.; Goff, D. V. Glycemic Index of Foods: A Physiological Basis for Carbohydrate Exchange. Am. J. Clin. Nutr. 1981, 34 (3), 362–366. https://doi.org/10.1093/ajcn/34.3.362.

(315) Foster-Powell, K.; Holt, S. H.; Brand-Miller, J. C. International Table of Glycemic Index and Glycemic Load Values: 2002. Am. J. Clin. Nutr. 2002, 76 (1), 5–56. https://doi.org/10.1093/ajcn/76.1.5.

(316) Chandalia, M.; Garg, A.; Lutjohann, D.; von Bergmann, K.; Grundy, S. M.; Brinkley, L. J. Beneficial Effects of High Dietary Fiber Intake in Patients with Type 2 Diabetes Mellitus. N. Engl. J. Med. 2000, 342 (19), 1392–1398. https://doi.org/10.1056/NEJM200005113421903.

(317) Yamaguchi, Y.; Okawa, Y.; Ninomiya, K.; Kumagai, H.; Kumagai, H. Evaluation and Suppression of Retrogradation of Gelatinized Rice Starch. J. Nutr. Sci. Vitaminol. (Tokyo) 2019, 65 (Supplement), S134–S138. https://doi.org/10.3177/jnsv.65.S134.

(318) Hätönen, K. A.; Virtamo, J.; Eriksson, J. G.; Sinkko, H. K.; Sundvall, J. E.; Valsta, L. M. Protein and Fat Modify the Glycaemic and Insulinaemic Responses to a Mashed Potato-Based Meal. Br. J. Nutr. 2011, 106 (2), 248–253. https://doi.org/10.1017/S0007114511000080.

(319) Thorburn, A. W.; Brand, J. C.; Truswell, A. S. Salt and the Glycaemic Response. Br. Med. J. Clin. Res. Ed 1986, 292 (6537), 1697–1699.

(320) Gans, R. O.; Heine, R. J.; Donker, A. J.; van der Veen, E. A. Influence of Salt on Glycaemic Response to Carbohydrate Loading. Br. Med. J. Clin. Res. Ed 1987, 294 (6582), 1252–1253. https://doi.org/10.1136/bmj.294.6582.1252.

(321) Akanji, A. O.; Charles-Davies, M. A.; Ezenwaka, C.; Abbiyesuku, F. A.; Osotimehin, B. O. Dietary Salt and the Glycaemic Response to Meals of Different Fibre Content. Eur. J. Clin. Nutr. 1989, 43 (10), 699–703.

(322) Kim, Y.; Keogh, J. B.; Clifton, P. M. Polyphenols and Glycemic Control. Nutrients 2016, 8 (1). https://doi.org/10.3390/nu8010017.

(323) Kang, G. G.; Francis, N.; Hill, R.; Waters, D.; Blanchard, C.; Santhakumar, A. B. Dietary Polyphenols and Gene Expression in Molecular Pathways Associated with Type 2 Diabetes Mellitus: A Review. Int. J. Mol. Sci. 2019, 21 (1). https://doi.org/10.3390/ijms21010140.

(324) Bo, S.; Seletto, M.; Choc, A.; Ponzo, V.; Lezo, A.; Demagistris, A.; Evangelista, A.; Ciccone, G.; Bertolino, M.; Cassader, M.; Gambino, R. The Acute Impact of the Intake of Four Types of Bread on Satiety and Blood Concentrations of Glucose, Insulin, Free Fatty Acids, Triglyceride and Acylated Ghrelin. A Randomized Controlled Cross-over Trial. Food Res. Int. Ott. Ont 2017, 92, 40–47. https://doi.org/10.1016/j.foodres.2016.12.019.

(325) Yang, C.-Y.; Yen, Y.-Y.; Hung, K.-C.; Hsu, S.-W.; Lan, S.-J.; Lin, H.-C. Inhibitory Effects of Pu-Erh Tea on Alpha Glucosidase and Alpha Amylase: A Systemic Review. Nutr. Diabetes 2019, 9 (1), 23. https://doi.org/10.1038/s41387-019-0092-y.

(326) Pi-Sunyer, F. X. Glycemic Index and Disease. Am. J. Clin. Nutr. 2002, 76 (1), 290S-8S. https://doi.org/10.1093/ajcn/76/1.290S.

(327) Suzuki, H.; Fukushima, M.; Okamoto, S.; Takahashi, O.; Shimbo, T.; Kurose, T.; Yamada, Y.; Inagaki, N.; Seino, Y.; Fukui, T. Effects of Thorough Mastication on Postprandial Plasma Glucose Concentrations in Nonobese Japanese Subjects. Metabolism. 2005, 54 (12), 1593–1599. https://doi.org/10.1016/j.metabol.2005.06.006.

(328) Freeman, J. The Glycemic Index Debate: Does the Type of Carbohydrate Really Matter? Diabetes Forecast 2005, 58 (9), 11.

(329) Venn, B. J.; Green, T. J. Glycemic Index and Glycemic Load: Measurement Issues and Their Effect on Diet-Disease Relationships. Eur. J. Clin. Nutr. 2007, 61 Suppl 1, S122-131. https://doi.org/10.1038/sj.ejcn.1602942.

(330) Brand-Miller, J. C.; Thomas, M.; Swan, V.; Ahmad, Z. I.; Petocz, P.; Colagiuri, S. Physiological Validation of the Concept of Glycemic Load in Lean Young Adults. J. Nutr. 2003, 133 (9), 2728–2732. https://doi.org/10.1093/jn/133.9.2728.

(331) Venn, B. J.; Wallace, A. J.; Monro, J. A.; Perry, T.; Brown, R.; Frampton, C.; Green, T. J. The Glycemic Load Estimated from the Glycemic Index Does Not Differ Greatly from That Measured Using a Standard Curve in Healthy Volunteers. J. Nutr. 2006, 136 (5), 1377–1381. https://doi.org/10.1093/jn/136.5.1377.

(332) Livesey, G. Health Potential of Polyols as Sugar Replacers, with Emphasis on Low Glycaemic Properties. Nutr. Res. Rev. 2003, 16 (2), 163–191. https://doi.org/10.1079/NRR200371.

(333) Wölnerhanssen, B. K.; Cajacob, L.; Keller, N.; Doody, A.; Rehfeld, J. F.; Drewe, J.; Peterli, R.; Beglinger, C.; Meyer-Gerspach, A. C. Gut Hormone Secretion, Gastric Emptying, and Glycemic Responses to Erythritol and Xylitol in Lean and Obese Subjects. Am. J. Physiol. Endocrinol. Metab. 2016, 310 (11), E1053-1061. https://doi.org/10.1152/ajpendo.00037.2016.

(334) Uebanso, T.; Kano, S.; Yoshimoto, A.; Naito, C.; Shimohata, T.; Mawatari, K.; Takahashi, A. Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice. Nutrients 2017, 9 (7). https://doi.org/10.3390/nu9070756.

(335) Janket, S.-J.; Benwait, J.; Isaac, P.; Ackerson, L. K.; Meurman, J. H. Oral and Systemic Effects of Xylitol Consumption. Caries Res. 2019, 53 (5), 491–501. https://doi.org/10.1159/000499194.

(336) Collier, G.; O’Dea, K. The Effect of Coingestion of Fat on the Glucose, Insulin, and Gastric Inhibitory Polypeptide Responses to Carbohydrate and Protein. Am. J. Clin. Nutr. 1983, 37 (6), 941–944. https://doi.org/10.1093/ajcn/37.6.941.

(337) Schmid, R.; Schusdziarra, V.; Schulte-Frohlinde, E.; Maier, V.; Classen, M. Role of Amino Acids in Stimulation of Postprandial Insulin, Glucagon, and Pancreatic Polypeptide in Humans. Pancreas 1989, 4 (3), 305–314. https://doi.org/10.1097/00006676-198906000-00006.

(338) Ostman, E. M.; Liljeberg Elmståhl, H. G.; Björck, I. M. Inconsistency between Glycemic and Insulinemic Responses to Regular and Fermented Milk Products. Am. J. Clin. Nutr. 2001, 74 (1), 96–100. https://doi.org/10.1093/ajcn/74.1.96.

(339) Nilsson, M.; Stenberg, M.; Frid, A. H.; Holst, J. J.; Björck, I. M. E. Glycemia and Insulinemia in Healthy Subjects after Lactose-Equivalent Meals of Milk and Other Food Proteins: The Role of Plasma Amino Acids and Incretins. Am. J. Clin. Nutr. 2004, 80 (5), 1246–1253. https://doi.org/10.1093/ajcn/80.5.1246.

(340) van Loon, L. J.; Saris, W. H.; Verhagen, H.; Wagenmakers, A. J. Plasma Insulin Responses after Ingestion of Different Amino Acid or Protein Mixtures with Carbohydrate. Am. J. Clin. Nutr. 2000, 72 (1), 96–105. https://doi.org/10.1093/ajcn/72.1.96.

(341) Gonzalez-Anton, C.; Lopez-Millan, B.; Rico, M. C.; Sanchez-Rodriguez, E.; Ruiz-Lopez, M. D.; Gil, A.; Mesa, M. D. An Enriched, Cereal-Based Bread Affects Appetite Ratings and Glycemic, Insulinemic, and Gastrointestinal Hormone Responses in Healthy Adults in a Randomized, Controlled Trial. J. Nutr. 2015, 145 (2), 231–238. https://doi.org/10.3945/jn.114.200386.

(342) Korem, T.; Zeevi, D.; Zmora, N.; Weissbrod, O.; Bar, N.; Lotan-Pompan, M.; Avnit-Sagi, T.; Kosower, N.; Malka, G.; Rein, M.; Suez, J.; Goldberg, B. Z.; Weinberger, A.; Levy, A. A.; Elinav, E.; Segal, E. Bread Affects Clinical Parameters and Induces Gut Microbiome-Associated Personal Glycemic Responses. Cell Metab. 2017, 25 (6), 1243-1253.e5. https://doi.org/10.1016/j.cmet.2017.05.002.

(343) Houghton, D.; Hardy, T.; Stewart, C.; Errington, L.; Day, C. P.; Trenell, M. I.; Avery, L. Systematic Review Assessing the Effectiveness of Dietary Intervention on Gut Microbiota in Adults with Type 2 Diabetes. Diabetologia 2018, 61 (8), 1700–1711. https://doi.org/10.1007/s00125-018-4632-0.

(344) Zhao, L. and col. Gut Bacteria Selectively Promoted by Dietary Fibers Alleviate Type 2 Diabetes. Science 2018, 359 (6380), 1151–1156. https://doi.org/10.1126/science.aao5774.

(345) Steven, S.; Lim, E. L.; Taylor, R. Population Response to Information on Reversibility of Type 2 Diabetes. Diabet. Med. J. Br. Diabet. Assoc. 2013, 30 (4), e135-138. https://doi.org/10.1111/dme.12116.

(346) Steven, S.; Taylor, R. Restoring Normoglycaemia by Use of a Very Low Calorie Diet in Long- and Short-Duration Type 2 Diabetes. Diabet. Med. J. Br. Diabet. Assoc. 2015, 32 (9), 1149–1155. https://doi.org/10.1111/dme.12722.

(347) Lean, M. E.; Leslie, W. S.; Barnes, A. C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K. G.; Rodrigues, A. M.; Rehackova, L.; Adamson, A. J.; Sniehotta, F. F.; Mathers, J. C.; Ross, H. M.; McIlvenna, Y.; Stefanetti, R.; Trenell, M.; Welsh, P.; Kean, S.; Ford, I.; McConnachie, A.; Sattar, N.; Taylor, R. Primary Care-Led Weight Management for Remission of Type 2 Diabetes (DiRECT): An Open-Label, Cluster-Randomised Trial. The Lancet 2018, 391 (10120), 541–551. https://doi.org/10.1016/S0140-6736(17)33102-1.

(348) Perry, R. J.; Peng, L.; Cline, G. W.; Wang, Y.; Rabin-Court, A.; Song, J. D.; Zhang, D.; Zhang, X.-M.; Nozaki, Y.; Dufour, S.; Petersen, K. F.; Shulman, G. I. Mechanisms by Which a Very-Low-Calorie Diet Reverses Hyperglycemia in a Rat Model of Type 2 Diabetes. Cell Metab. 2018, 27 (1), 210-217.e3. https://doi.org/10.1016/j.cmet.2017.10.004.

(349) Taylor, R. Calorie Restriction for Long-Term Remission of Type 2 Diabetes. Clin. Med. 2019, 19 (1), 37–42. https://doi.org/10.7861/clinmedicine.19-1-37.

(350) Hutchison, A. T.; Regmi, P.; Manoogian, E. N. C.; Fleischer, J. G.; Wittert, G. A.; Panda, S.; Heilbronn, L. K. Time-Restricted Feeding Improves Glucose Tolerance in Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obes. Silver Spring Md 2019, 27 (5), 724–732. https://doi.org/10.1002/oby.22449.

(351) Albosta, M.; Bakke, J. Intermittent Fasting: Is There a Role in the Treatment of Diabetes? A Review of the Literature and Guide for Primary Care Physicians. Clin. Diabetes Endocrinol. 2021, 7 (1), 3. https://doi.org/10.1186/s40842-020-00116-1.

(352) Horne, B. D.; Muhlestein, J. B.; Lappé, D. L.; May, H. T.; Carlquist, J. F.; Galenko, O.; Brunisholz, K. D.; Anderson, J. L. Randomized Cross-over Trial of Short-Term Water-Only Fasting: Metabolic and Cardiovascular Consequences. Nutr. Metab. Cardiovasc. Dis. NMCD 2013, 23 (11), 1050–1057. https://doi.org/10.1016/j.numecd.2012.09.007.

(353) Washburn, R. L.; Cox, J. E.; Muhlestein, J. B.; May, H. T.; Carlquist, J. F.; Le, V. T.; Anderson, J. L.; Horne, B. D. Pilot Study of Novel Intermittent Fasting Effects on Metabolomic and Trimethylamine N-Oxide Changes During 24-Hour Water-Only Fasting in the FEELGOOD Trial. Nutrients 2019, 11 (2). https://doi.org/10.3390/nu11020246.

(354) Paoli, A.; Tinsley, G.; Bianco, A.; Moro, T. The Influence of Meal Frequency and Timing on Health in Humans: The Role of Fasting. Nutrients 2019, 11 (4). https://doi.org/10.3390/nu11040719.

(355) Grajower, M. M.; Horne, B. D. Clinical Management of Intermittent Fasting in Patients with Diabetes Mellitus. Nutrients 2019, 11 (4). https://doi.org/10.3390/nu11040873.

(356) Kirk, J. K.; Graves, D. E.; Craven, T. E.; Lipkin, E. W.; Austin, M.; Margolis, K. L. Restricted-Carbohydrate Diets in Patients with Type 2 Diabetes: A Meta-Analysis. J. Am. Diet. Assoc. 2008, 108 (1), 91–100. https://doi.org/10.1016/j.jada.2007.10.003.

(357) Ajala, O.; English, P.; Pinkney, J. Systematic Review and Meta-Analysis of Different Dietary Approaches to the Management of Type 2 Diabetes. Am. J. Clin. Nutr. 2013, 97 (3), 505–516. https://doi.org/10.3945/ajcn.112.042457.

(358) Meng, Y.; Bai, H.; Wang, S.; Li, Z.; Wang, Q.; Chen, L. Efficacy of Low Carbohydrate Diet for Type 2 Diabetes Mellitus Management: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Res. Clin. Pract. 2017, 131, 124–131. https://doi.org/10.1016/j.diabres.2017.07.006.

(359) Snorgaard, O.; Poulsen, G. M.; Andersen, H. K.; Astrup, A. Systematic Review and Meta-Analysis of Dietary Carbohydrate Restriction in Patients with Type 2 Diabetes. BMJ Open Diabetes Res. Care 2017, 5 (1). https://doi.org/10.1136/bmjdrc-2016-000354.

(360) Carter, S.; Clifton, P. M.; Keogh, J. B. Effect of Intermittent Compared With Continuous Energy Restricted Diet on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Noninferiority Trial. JAMA Netw. Open 2018, 1 (3), e180756. https://doi.org/10.1001/jamanetworkopen.2018.0756.

(361) Corley, B. T.; Carroll, R. W.; Hall, R. M.; Weatherall, M.; Parry-Strong, A.; Krebs, J. D. Intermittent Fasting in Type 2 Diabetes Mellitus and the Risk of Hypoglycaemia: A Randomized Controlled Trial. Diabet. Med. J. Br. Diabet. Assoc. 2018, 35 (5), 588–594. https://doi.org/10.1111/dme.13595.

(362) Rajmohan, R.; Reddy, P. H. Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s Disease Neurons. J. Alzheimers Dis. JAD 2017, 57 (4), 975–999. https://doi.org/10.3233/JAD-160612.

(363) Hardy, J.; Allsop, D. Amyloid Deposition as the Central Event in the Aetiology of Alzheimer’s Disease. Trends Pharmacol. Sci. 1991, 12 (10), 383–388. https://doi.org/10.1016/0165-6147(91)90609-v.

(364) Chételat, G.; La Joie, R.; Villain, N.; Perrotin, A.; de La Sayette, V.; Eustache, F.; Vandenberghe, R. Amyloid Imaging in Cognitively Normal Individuals, at-Risk Populations and Preclinical Alzheimer’s Disease. NeuroImage Clin. 2013, 2, 356–365. https://doi.org/10.1016/j.nicl.2013.02.006.

(365) Jack, C. R.; Knopman, D. S.; Chételat, G.; Dickson, D.; Fagan, A. M.; Frisoni, G. B.; Jagust, W.; Mormino, E. C.; Petersen, R. C.; Sperling, R. A.; van der Flier, W. M.; Villemagne, V. L.; Visser, P. J.; Vos, S. J. B. Suspected Non-Alzheimer Disease Pathophysiology–Concept and Controversy. Nat. Rev. Neurol. 2016, 12 (2), 117–124. https://doi.org/10.1038/nrneurol.2015.251.

(366) Tse, K.-H.; Herrup, K. Re-Imagining Alzheimer’s Disease – the Diminishing Importance of Amyloid and a Glimpse of What Lies Ahead. J. Neurochem. 2017, 143 (4), 432–444. https://doi.org/10.1111/jnc.14079.

(367) Kametani, F.; Hasegawa, M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer’s Disease. Front. Neurosci. 2018, 12. https://doi.org/10.3389/fnins.2018.00025.

(368) Miklossy, J. Alzheimer’s Disease – a Neurospirochetosis. Analysis of the Evidence Following Koch’s and Hill’s Criteria. J. Neuroinflammation 2011, 8, 90. https://doi.org/10.1186/1742-2094-8-90.

(369) Harris, S. A.; Harris, E. A. Herpes Simplex Virus Type 1 and Other Pathogens Are Key Causative Factors in Sporadic Alzheimer’s Disease. J. Alzheimers Dis. JAD 2015, 48 (2), 319–353. https://doi.org/10.3233/JAD-142853.

(370) Itzhaki, R. F. and col. A. Microbes and Alzheimer’s Disease. J. Alzheimers Dis. JAD 2016, 51 (4), 979–984. https://doi.org/10.3233/JAD-160152.

(371) Atarashi, K. and col. Ectopic Colonization of Oral Bacteria in the Intestine Drives TH1 Cell Induction and Inflammation. Science 2017, 358 (6361), 359–365. https://doi.org/10.1126/science.aan4526.

(372) Sochocka, M.; Zwolińska, K.; Leszek, J. The Infectious Etiology of Alzheimer’s Disease. Curr. Neuropharmacol. 2017, 15 (7), 996–1009. https://doi.org/10.2174/1570159X15666170313122937.

(373) Lira-Junior, R.; Boström, E. A. Oral-Gut Connection: One Step Closer to an Integrated View of the Gastrointestinal Tract? Mucosal Immunol. 2018, 11 (2), 316–318. https://doi.org/10.1038/mi.2017.116.

(374) Mancuso, C.; Santangelo, R. Alzheimer’s Disease and Gut Microbiota Modifications: The Long Way between Preclinical Studies and Clinical Evidence. Pharmacol. Res. 2018, 129, 329–336. https://doi.org/10.1016/j.phrs.2017.12.009.

(375) de la Monte, S. M.; Wands, J. R. Alzheimer’s Disease Is Type 3 Diabetes-Evidence Reviewed. J. Diabetes Sci. Technol. 2008, 2 (6), 1101–1113. https://doi.org/10.1177/193229680800200619.

(376) De Felice, F. G.; Ferreira, S. T. Inflammation, Defective Insulin Signaling, and Mitochondrial Dysfunction as Common Molecular Denominators Connecting Type 2 Diabetes to Alzheimer Disease. Diabetes 2014, 63 (7), 2262–2272. https://doi.org/10.2337/db13-1954.

(377) Kullmann, S.; Heni, M.; Hallschmid, M.; Fritsche, A.; Preissl, H.; Häring, H.-U. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiol. Rev. 2016, 96 (4), 1169–1209. https://doi.org/10.1152/physrev.00032.2015.

(378) Kandimalla, R.; Thirumala, V.; Reddy, P. H. Is Alzheimer’s Disease a Type 3 Diabetes? A Critical Appraisal. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863 (5), 1078–1089. https://doi.org/10.1016/j.bbadis.2016.08.018.

(379) Kaur, D.; Sharma, V.; Deshmukh, R. Activation of Microglia and Astrocytes: A Roadway to Neuroinflammation and Alzheimer’s Disease. Inflammopharmacology 2019, 27 (4), 663–677. https://doi.org/10.1007/s10787-019-00580-x.

(380) Chen, L.; Chen, R.; Wang, H.; Liang, F. Mechanisms Linking Inflammation to Insulin Resistance. Int. J. Endocrinol. 2015, 2015, 508409. https://doi.org/10.1155/2015/508409.

(381) Rehman, K.; Akash, M. S. H. Mechanisms of Inflammatory Responses and Development of Insulin Resistance: How Are They Interlinked? J. Biomed. Sci. 2016, 23 (1), 87. https://doi.org/10.1186/s12929-016-0303-y.

(382) de la Monte, S. M. Insulin Resistance and Neurodegeneration: Progress Towards the Development of New Therapeutics for Alzheimer’s Disease. Drugs 2017, 77 (1), 47–65. https://doi.org/10.1007/s40265-016-0674-0.

(383) De Felice, F. G.; Benedict, C. A Key Role of Insulin Receptors in Memory. Diabetes 2015, 64 (11), 3653–3655. https://doi.org/10.2337/dbi15-0011.

(384) Ziegler, A. N.; Levison, S. W.; Wood, T. L. Insulin and IGF Receptor Signalling in Neural-Stem-Cell Homeostasis. Nat. Rev. Endocrinol. 2015, 11 (3), 161–170. https://doi.org/10.1038/nrendo.2014.208.

(385) Blázquez, E.; Velázquez, E.; Hurtado-Carneiro, V.; Ruiz-Albusac, J. M. Insulin in the Brain: Its Pathophysiological Implications for States Related with Central Insulin Resistance, Type 2 Diabetes and Alzheimer’s Disease. Front. Endocrinol. 2014, 5, 161. https://doi.org/10.3389/fendo.2014.00161.

(386) Inoue, H. Central Insulin-Mediated Regulation of Hepatic Glucose Production [Review]. Endocr. J. 2016, 63 (1), 1–7. https://doi.org/10.1507/endocrj.EJ15-0540.

(387) Gasparini, L.; Xu, H. Role for Neuronal Insulin Resistance in Neurodegenerative Diseases. Trends Neurosci. 2003, 26 (8), 404–406. https://doi.org/10.1016/S0166-2236(03)00163-2.

(388) Schubert, M.; Gautam, D.; Surjo, D.; Ueki, K.; Baudler, S.; Schubert, D.; Kondo, T.; Alber, J.; Galldiks, N.; Küstermann, E.; Arndt, S.; Jacobs, A. H.; Krone, W.; Kahn, C. R.; Brüning, J. C. Potential Roles of Insulin and IGF-1 in Alzheimer’s Disease. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (9), 3100–3105. https://doi.org/10.1073/pnas.0308724101.

(389) Al Haj Ahmad, R. M.; Al-Domi, H. A. Thinking about Brain Insulin Resistance. Diabetes Metab. Syndr. 2018, 12 (6), 1091–1094. https://doi.org/10.1016/j.dsx.2018.05.003.

(390) Gudala, K.; Bansal, D.; Schifano, F.; Bhansali, A. Diabetes Mellitus and Risk of Dementia: A Meta-Analysis of Prospective Observational Studies. J. Diabetes Investig. 2013, 4 (6), 640–650. https://doi.org/10.1111/jdi.12087.

(391) Burska, A. N.; Sakthiswary, R.; Sattar, N. Effects of Tumour Necrosis Factor Antagonists on Insulin Sensitivity/Resistance in Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. PloS One 2015, 10 (6), e0128889. https://doi.org/10.1371/journal.pone.0128889.

(392) Chou, R. C.; Kane, M.; Ghimire, S.; Gautam, S.; Gui, J. Treatment for Rheumatoid Arthritis and Risk of Alzheimer’s Disease: A Nested Case-Control Analysis. CNS Drugs 2016, 30 (11), 1111–1120. https://doi.org/10.1007/s40263-016-0374-z.

(393) Bhat, A. H.; Dar, K. B.; Anees, S.; Zargar, M. A.; Masood, A.; Sofi, M. A.; Ganie, S. A. Oxidative Stress, Mitochondrial Dysfunction and Neurodegenerative Diseases; a Mechanistic Insight. Biomed. Pharmacother. Biomedecine Pharmacother. 2015, 74, 101–110. https://doi.org/10.1016/j.biopha.2015.07.025.

(394) Zilberter, Y.; Zilberter, M. The Vicious Circle of Hypometabolism in Neurodegenerative Diseases: Ways and Mechanisms of Metabolic Correction. J. Neurosci. Res. 2017, 95 (11), 2217–2235. https://doi.org/10.1002/jnr.24064.

(395) Oliver, D. M. A.; Reddy, P. H. Molecular Basis of Alzheimer’s Disease: Focus on Mitochondria. J. Alzheimers Dis. JAD 2019, 72 (s1), S95–S116. https://doi.org/10.3233/JAD-190048.

(396) Cenini, G.; Voos, W. Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Front. Pharmacol. 2019, 10.

(397) Yan, D.; Zhang, Y.; Liu, L.; Yan, H. Pesticide Exposure and Risk of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Sci. Rep. 2016, 6, 32222. https://doi.org/10.1038/srep32222.

(398) Wang, Z.; Wei, X.; Yang, J.; Suo, J.; Chen, J.; Liu, X.; Zhao, X. Chronic Exposure to Aluminum and Risk of Alzheimer’s Disease: A Meta-Analysis. Neurosci. Lett. 2016, 610, 200–206. https://doi.org/10.1016/j.neulet.2015.11.014.

(399) Carroll, C. M.; Macauley, S. L. The Interaction Between Sleep and Metabolism in Alzheimer’s Disease: Cause or Consequence of Disease? Front. Aging Neurosci. 2019, 11, 258. https://doi.org/10.3389/fnagi.2019.00258.

(400) De la Rosa, A.; Olaso-Gonzalez, G.; Arc-Chagnaud, C.; Millan, F.; Salvador-Pascual, A.; García-Lucerga, C.; Blasco-Lafarga, C.; Garcia-Dominguez, E.; Carretero, A.; Correas, A. G.; Viña, J.; Gomez-Cabrera, M. C. Physical Exercise in the Prevention and Treatment of Alzheimer’s Disease. J. Sport Health Sci. 2020, 9 (5), 394–404. https://doi.org/10.1016/j.jshs.2020.01.004.

(401) Singh, B.; Parsaik, A. K.; Mielke, M. M.; Erwin, P. J.; Knopman, D. S.; Petersen, R. C.; Roberts, R. O. Association of Mediterranean Diet with Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Alzheimers Dis. JAD 2014, 39 (2), 271–282. https://doi.org/10.3233/JAD-130830.

(402) Berti, V.; Walters, M.; Sterling, J.; Quinn, C. G.; Logue, M.; Andrews, R.; Matthews, D. C.; Osorio, R. S.; Pupi, A.; Vallabhajosula, S.; Isaacson, R. S.; de Leon, M. J.; Mosconi, L. Mediterranean Diet and 3-Year Alzheimer Brain Biomarker Changes in Middle-Aged Adults. Neurology 2018, 90 (20), e1789–e1798. https://doi.org/10.1212/WNL.0000000000005527.

(403) García-Casares, N.; Gallego Fuentes, P.; Barbancho, M. Á.; López-Gigosos, R.; García-Rodríguez, A.; Gutiérrez-Bedmar, M. Alzheimer’s Disease, Mild Cognitive Impairment and Mediterranean Diet. A Systematic Review and Dose-Response Meta-Analysis. J. Clin. Med. 2021, 10 (20), 4642. https://doi.org/10.3390/jcm10204642.

(404) Koloverou, E.; Esposito, K.; Giugliano, D.; Panagiotakos, D. The Effect of Mediterranean Diet on the Development of Type 2 Diabetes Mellitus: A Meta-Analysis of 10 Prospective Studies and 136,846 Participants. Metabolism. 2014, 63 (7), 903–911. https://doi.org/10.1016/j.metabol.2014.04.010.

(405) Schwingshackl, L.; Missbach, B.; König, J.; Hoffmann, G. Adherence to a Mediterranean Diet and Risk of Diabetes: A Systematic Review and Meta-Analysis. Public Health Nutr. 2015, 18 (7), 1292–1299. https://doi.org/10.1017/S1368980014001542.

(406) Jannasch, F.; Kröger, J.; Schulze, M. B. Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis of Prospective Studies. J. Nutr. 2017, 147 (6), 1174–1182. https://doi.org/10.3945/jn.116.242552.

(407) Pan, A.; Sun, Q.; Bernstein, A. M.; Schulze, M. B.; Manson, J. E.; Willett, W. C.; Hu, F. B. Red Meat Consumption and Risk of Type 2 Diabetes: 3 Cohorts of US Adults and an Updated Meta-Analysis. Am. J. Clin. Nutr. 2011, 94 (4), 1088–1096. https://doi.org/10.3945/ajcn.111.018978.

(408) Feskens, E. J. M.; Sluik, D.; van Woudenbergh, G. J. Meat Consumption, Diabetes, and Its Complications. Curr. Diab. Rep. 2013, 13 (2), 298–306. https://doi.org/10.1007/s11892-013-0365-0.

(409) Pan, A.; Sun, Q.; Bernstein, A. M.; Manson, J. E.; Willett, W. C.; Hu, F. B. Changes in Red Meat Consumption and Subsequent Risk of Type 2 Diabetes Mellitus: Three Cohorts of US Men and Women. JAMA Intern. Med. 2013, 173 (14), 1328–1335. https://doi.org/10.1001/jamainternmed.2013.6633.

(410) Satija, A.; Bhupathiraju, S. N.; Rimm, E. B.; Spiegelman, D.; Chiuve, S. E.; Borgi, L.; Willett, W. C.; Manson, J. E.; Sun, Q.; Hu, F. B. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLoS Med. 2016, 13 (6), e1002039. https://doi.org/10.1371/journal.pmed.1002039.

(411) Satija, A.; Bhupathiraju, S. N.; Spiegelman, D.; Chiuve, S. E.; Manson, J. E.; Willett, W.; Rexrode, K. M.; Rimm, E. B.; Hu, F. B. Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults. J. Am. Coll. Cardiol. 2017, 70 (4), 411–422. https://doi.org/10.1016/j.jacc.2017.05.047.

(412) Etemadi, A.; Sinha, R.; Ward, M. H.; Graubard, B. I.; Inoue-Choi, M.; Dawsey, S. M.; Abnet, C. C. Mortality from Different Causes Associated with Meat, Heme Iron, Nitrates, and Nitrites in the NIH-AARP Diet and Health Study: Population Based Cohort Study. BMJ 2017, 357, j1957. https://doi.org/10.1136/bmj.j1957.

(413) Wu, Y.; Zhang, D.; Jiang, X.; Jiang, W. Fruit and Vegetable Consumption and Risk of Type 2 Diabetes Mellitus: A Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutr. Metab. Cardiovasc. Dis. NMCD 2015, 25 (2), 140–147. https://doi.org/10.1016/j.numecd.2014.10.004.

(414) Jing, Y.; Han, G.; Hu, Y.; Bi, Y.; Li, L.; Zhu, D. Tea Consumption and Risk of Type 2 Diabetes: A Meta-Analysis of Cohort Studies. J. Gen. Intern. Med. 2009, 24 (5), 557–562. https://doi.org/10.1007/s11606-009-0929-5.

(415) Larner, J. D-Chiro-Inositol – Its Functional Role in Insulin Action and Its Deficit in Insulin Resistance. Int. J. Exp. Diabetes Res. 2002, 3 (1), 47–60. https://doi.org/10.1080/15604280212528.

(416) Izydorczyk, M. S.; McMillan, T.; Bazin, S.; Kletke, J.; Dushnicky, L.; Dexter, J. Canadian Buckwheat: A Unique, Useful and under-Utilized Crop. Can. J. Plant Sci. 2013, 94 (3), 509–524. https://doi.org/10.4141/cjps2013-075.

(417) Jing, R.; Li, H.-Q.; Hu, C.-L.; Jiang, Y.-P.; Qin, L.-P.; Zheng, C.-J. Phytochemical and Pharmacological Profiles of Three Fagopyrum Buckwheats. Int. J. Mol. Sci. 2016, 17 (4). https://doi.org/10.3390/ijms17040589.

(418) Allen, R. W.; Schwartzman, E.; Baker, W. L.; Coleman, C. I.; Phung, O. J. Cinnamon Use in Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis. Ann. Fam. Med. 2013, 11 (5), 452–459. https://doi.org/10.1370/afm.1517.

(419) Ostman, E.; Granfeldt, Y.; Persson, L.; Björck, I. Vinegar Supplementation Lowers Glucose and Insulin Responses and Increases Satiety after a Bread Meal in Healthy Subjects. Eur. J. Clin. Nutr. 2005, 59 (9), 983–988. https://doi.org/10.1038/sj.ejcn.1602197.

(420) Lim, J.; Henry, C. J.; Haldar, S. Vinegar as a Functional Ingredient to Improve Postprandial Glycemic Control-Human Intervention Findings and Molecular Mechanisms. Mol. Nutr. Food Res. 2016, 60 (8), 1837–1849. https://doi.org/10.1002/mnfr.201600121.

(421) Shishehbor, F.; Mansoori, A.; Shirani, F. Vinegar Consumption Can Attenuate Postprandial Glucose and Insulin Responses; a Systematic Review and Meta-Analysis of Clinical Trials. Diabetes Res. Clin. Pract. 2017, 127, 1–9. https://doi.org/10.1016/j.diabres.2017.01.021.

(422) Rodríguez-Morán, M.; Guerrero-Romero, F. Oral Magnesium Supplementation Improves Insulin Sensitivity and Metabolic Control in Type 2 Diabetic Subjects: A Randomized Double-Blind Controlled Trial. Diabetes Care 2003, 26 (4), 1147–1152.

(423) Veronese, N.; Watutantrige-Fernando, S.; Luchini, C.; Solmi, M.; Sartore, G.; Sergi, G.; Manzato, E.; Barbagallo, M.; Maggi, S.; Stubbs, B. Effect of Magnesium Supplementation on Glucose Metabolism in People with or at Risk of Diabetes: A Systematic Review and Meta-Analysis of Double-Blind Randomized Controlled Trials. Eur. J. Clin. Nutr. 2016, 70 (12), 1354–1359. https://doi.org/10.1038/ejcn.2016.154.

(424) Milne, J. C. and col. Small Molecule Activators of SIRT1 as Therapeutics for the Treatment of Type 2 Diabetes. Nature 2007, 450 (7170), 712–716. https://doi.org/10.1038/nature06261.

(425) Liu, K.; Zhou, R.; Wang, B.; Mi, M.-T. Effect of Resveratrol on Glucose Control and Insulin Sensitivity: A Meta-Analysis of 11 Randomized Controlled Trials. Am J Clin Nutr 2014, 99 (6), 1510–1519. https://doi.org/10.3945/ajcn.113.082024.

(426) Szkudelski, T.; Szkudelska, K. Resveratrol and Diabetes: From Animal to Human Studies. Biochim. Biophys. Acta BBA – Mol. Basis Dis. 2015, 1852 (6), 1145–1154. https://doi.org/10.1016/j.bbadis.2014.10.013.

(427) Öztürk, E.; Arslan, A. K. K.; Yerer, M. B.; Bishayee, A. Resveratrol and Diabetes: A Critical Review of Clinical Studies. Biomed. Pharmacother. 2017, 95, 230–234. https://doi.org/10.1016/j.biopha.2017.08.070.

(428) ANSES. Edulcorants intenses : pas d’intérêt nutritionnel démontré pour les usages alimentaires. Anses. https://www.anses.fr/fr/content/edulcorants-intenses-pas-d%E2%80%99int%C3%A9r%C3%AAt-nutritionnel-d%C3%A9montr%C3%A9-pour-les-usages-alimentaires (accessed 2019-12-13).

(429) Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C. A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; Kuperman, Y.; Harmelin, A.; Kolodkin-Gal, I.; Shapiro, H.; Halpern, Z.; Segal, E.; Elinav, E. Artificial Sweeteners Induce Glucose Intolerance by Altering the Gut Microbiota. Nature 2014, 514 (7521), 181–186. https://doi.org/10.1038/nature13793.

(430) Nettleton, J. E.; Reimer, R. A.; Shearer, J. Reshaping the Gut Microbiota: Impact of Low Calorie Sweeteners and the Link to Insulin Resistance? Physiol. Behav. 2016, 164 (Pt B), 488–493. https://doi.org/10.1016/j.physbeh.2016.04.029.

(431) Frankenfeld, C. L.; Sikaroodi, M.; Lamb, E.; Shoemaker, S.; Gillevet, P. M. High-Intensity Sweetener Consumption and Gut Microbiome Content and Predicted Gene Function in a Cross-Sectional Study of Adults in the United States. Ann. Epidemiol. 2015, 25 (10), 736-742.e4. https://doi.org/10.1016/j.annepidem.2015.06.083.

(432) Rodriguez-Palacios, A.; Harding, A.; Menghini, P.; Himmelman, C.; Retuerto, M.; Nickerson, K. P.; Lam, M.; Croniger, C. M.; McLean, M. H.; Durum, S. K.; Pizarro, T. T.; Ghannoum, M. A.; Ilic, S.; McDonald, C.; Cominelli, F. The Artificial Sweetener Splenda Promotes Gut Proteobacteria, Dysbiosis, and Myeloperoxidase Reactivity in Crohn’s Disease-Like Ileitis. Inflamm. Bowel Dis. 2018, 24 (5), 1005–1020. https://doi.org/10.1093/ibd/izy060.

(433) Ruiz-Ojeda, F. J.; Plaza-Díaz, J.; Sáez-Lara, M. J.; Gil, A. Effects of Sweeteners on the Gut Microbiota: A Review of Experimental Studies and Clinical Trials. Adv. Nutr. 2019, 10 (Suppl 1), S31–S48. https://doi.org/10.1093/advances/nmy037.

(434) Azad, M. B.; Abou-Setta, A. M.; Chauhan, B. F.; Rabbani, R.; Lys, J.; Copstein, L.; Mann, A.; Jeyaraman, M. M.; Reid, A. E.; Fiander, M.; MacKay, D. S.; McGavock, J.; Wicklow, B.; Zarychanski, R. Nonnutritive Sweeteners and Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials and Prospective Cohort Studies. CMAJ Can. Med. Assoc. J. J. Assoc. Medicale Can. 2017, 189 (28), E929–E939. https://doi.org/10.1503/cmaj.161390.

(435) Bes-Rastrollo, M.; Schulze, M. B.; Ruiz-Canela, M.; Martinez-Gonzalez, M. A. Financial Conflicts of Interest and Reporting Bias Regarding the Association between Sugar-Sweetened Beverages and Weight Gain: A Systematic Review of Systematic Reviews. PLoS Med. 2013, 10 (12). https://doi.org/10.1371/journal.pmed.1001578.

(436) Chartres, N.; Fabbri, A.; Bero, L. A. Association of Industry Sponsorship With Outcomes of Nutrition Studies: A Systematic Review and Meta-Analysis. JAMA Intern. Med. 2016, 176 (12), 1769–1777. https://doi.org/10.1001/jamainternmed.2016.6721.

(437) Mandrioli, D.; Kearns, C. E.; Bero, L. A. Relationship between Research Outcomes and Risk of Bias, Study Sponsorship, and Author Financial Conflicts of Interest in Reviews of the Effects of Artificially Sweetened Beverages on Weight Outcomes: A Systematic Review of Reviews. PloS One 2016, 11 (9), e0162198. https://doi.org/10.1371/journal.pone.0162198.

(438) Samuel, P.; Ayoob, K. T.; Magnuson, B. A.; Wölwer-Rieck, U.; Jeppesen, P. B.; Rogers, P. J.; Rowland, I.; Mathews, R. Stevia Leaf to Stevia Sweetener: Exploring Its Science, Benefits, and Future Potential. J. Nutr. 2018, 148 (7), 1186S-1205S. https://doi.org/10.1093/jn/nxy102.

(439) Nettleton, J. E.; Cho, N. A.; Klancic, T.; Nicolucci, A. C.; Shearer, J.; Borgland, S. L.; Johnston, L. A.; Ramay, H. R.; Tuplin, E. N.; Chleilat, F.; Thomson, C.; Mayengbam, S.; McCoy, K. D.; Reimer, R. A. Maternal Low-Dose Aspartame and Stevia Consumption with an Obesogenic Diet Alters Metabolism, Gut Microbiota and Mesolimbic Reward System in Rat Dams and Their Offspring. Gut 2020. https://doi.org/10.1136/gutjnl-2018-317505.

(440) Lemon, P. W. R. Dietary Creatine Supplementation and Exercise Performance: Why Inconsistent Results? Can. J. Appl. Physiol. Rev. Can. Physiol. Appl. 2002, 27 (6), 663–681.

(441) Hawley, J. A. Exercise as a Therapeutic Intervention for the Prevention and Treatment of Insulin Resistance. Diabetes Metab. Res. Rev. 2004, 20 (5), 383–393. https://doi.org/10.1002/dmrr.505.

(442) Thomas, D. E.; Elliott, E. J.; Naughton, G. A. Exercise for Type 2 Diabetes Mellitus. Cochrane Database Syst. Rev. 2006, No. 3, CD002968. https://doi.org/10.1002/14651858.CD002968.pub2.

(443) Sigal, R. J.; Kenny, G. P.; Boulé, N. G.; Wells, G. A.; Prud’homme, D.; Fortier, M.; Reid, R. D.; Tulloch, H.; Coyle, D.; Phillips, P.; Jennings, A.; Jaffey, J. Effects of Aerobic Training, Resistance Training, or Both on Glycemic Control in Type 2 Diabetes: A Randomized Trial. Ann. Intern. Med. 2007, 147 (6), 357–369. https://doi.org/10.7326/0003-4819-147-6-200709180-00005.

(444) Riddell, M.; Perkins, B. A. Exercise and Glucose Metabolism in Persons with Diabetes Mellitus: Perspectives on the Role for Continuous Glucose Monitoring. J. Diabetes Sci. Technol. 2009, 3 (4), 914–923. https://doi.org/10.1177/193229680900300439.

(445) Umpierre, D.; Ribeiro, P. A. B.; Kramer, C. K.; Leitão, C. B.; Zucatti, A. T. N.; Azevedo, M. J.; Gross, J. L.; Ribeiro, J. P.; Schaan, B. D. Physical Activity Advice Only or Structured Exercise Training and Association with HbA1c Levels in Type 2 Diabetes: A Systematic Review and Meta-Analysis. JAMA 2011, 305 (17), 1790–1799. https://doi.org/10.1001/jama.2011.576.

(446) Reiner, M.; Niermann, C.; Jekauc, D.; Woll, A. Long-Term Health Benefits of Physical Activity – a Systematic Review of Longitudinal Studies. BMC Public Health 2013, 13 (1), 813. https://doi.org/10.1186/1471-2458-13-813.

(447) Gratas-Delamarche, A.; Derbré, F.; Vincent, S.; Cillard, J. Physical Inactivity, Insulin Resistance, and the Oxidative-Inflammatory Loop. Free Radic. Res. 2014, 48 (1), 93–108. https://doi.org/10.3109/10715762.2013.847528.

(448) Edwards, M. K.; Loprinzi, P. D. Comparative Effects of Meditation and Exercise on Physical and Psychosocial Health Outcomes: A Review of Randomized Controlled Trials. Postgrad. Med. 2018, 130 (2), 222–228. https://doi.org/10.1080/00325481.2018.1409049.

(449) Adeva-Andany, M. M.; González-Lucán, M.; Donapetry-García, C.; Fernández-Fernández, C.; Ameneiros-Rodríguez, E. Glycogen Metabolism in Humans. BBA Clin. 2016, 5, 85–100. https://doi.org/10.1016/j.bbacli.2016.02.001.

(450) Stoner, L.; Rowlands, D.; Morrison, A.; Credeur, D.; Hamlin, M.; Gaffney, K.; Lambrick, D.; Matheson, A. Efficacy of Exercise Intervention for Weight Loss in Overweight and Obese Adolescents: Meta-Analysis and Implications. Sports Med. Auckl. NZ 2016, 46 (11), 1737–1751. https://doi.org/10.1007/s40279-016-0537-6.

(451) Way, K. L.; Hackett, D. A.; Baker, M. K.; Johnson, N. A. The Effect of Regular Exercise on Insulin Sensitivity in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetes Metab. J. 2016, 40 (4), 253–271. https://doi.org/10.4093/dmj.2016.40.4.253.

(452) Sampath Kumar, A.; Maiya, A. G.; Shastry, B. A.; Vaishali, K.; Ravishankar, N.; Hazari, A.; Gundmi, S.; Jadhav, R. Exercise and Insulin Resistance in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Ann. Phys. Rehabil. Med. 2019, 62 (2), 98–103. https://doi.org/10.1016/j.rehab.2018.11.001.

(453) Schwingshackl, L.; Missbach, B.; Dias, S.; König, J.; Hoffmann, G. Impact of Different Training Modalities on Glycaemic Control and Blood Lipids in Patients with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Diabetologia 2014, 57 (9), 1789–1797. https://doi.org/10.1007/s00125-014-3303-z.

(454) Karstoft, K.; Winding, K.; Knudsen, S. H.; Nielsen, J. S.; Thomsen, C.; Pedersen, B. K.; Solomon, T. P. J. The Effects of Free-Living Interval-Walking Training on Glycemic Control, Body Composition, and Physical Fitness in Type 2 Diabetic Patients: A Randomized, Controlled Trial. Diabetes Care 2013, 36 (2), 228–236. https://doi.org/10.2337/dc12-0658.

(455) Karstoft, K.; Clark, M. A.; Jakobsen, I.; Müller, I. A.; Pedersen, B. K.; Solomon, T. P. J.; Ried-Larsen, M. The Effects of 2 Weeks of Interval vs Continuous Walking Training on Glycaemic Control and Whole-Body Oxidative Stress in Individuals with Type 2 Diabetes: A Controlled, Randomised, Crossover Trial. Diabetologia 2017, 60 (3), 508–517. https://doi.org/10.1007/s00125-016-4170-6.

(456) Bay, R.; Bay, F. Combined Therapy Using Acupressure Therapy, Hypnotherapy, and Transcendental Meditation versus Placebo in Type 2 Diabetes. J. Acupunct. Meridian Stud. 2011, 4 (3), 183–186. https://doi.org/10.1016/j.jams.2011.09.006.

(457) Gainey, A.; Himathongkam, T.; Tanaka, H.; Suksom, D. Effects of Buddhist Walking Meditation on Glycemic Control and Vascular Function in Patients with Type 2 Diabetes. Complement. Ther. Med. 2016, 26, 92–97. https://doi.org/10.1016/j.ctim.2016.03.009.

(458) Marcovecchio, M. L.; Chiarelli, F. The Effects of Acute and Chronic Stress on Diabetes Control. Sci. Signal. 2012, 5 (247), pt10. https://doi.org/10.1126/scisignal.2003508.

(459) Harris, M. L.; Oldmeadow, C.; Hure, A.; Luu, J.; Loxton, D.; Attia, J. Stress Increases the Risk of Type 2 Diabetes Onset in Women: A 12-Year Longitudinal Study Using Causal Modelling. PLoS ONE 2017, 12 (2). https://doi.org/10.1371/journal.pone.0172126.

(460) Kelly, S. J.; Ismail, M. Stress and Type 2 Diabetes: A Review of How Stress Contributes to the Development of Type 2 Diabetes. Annu. Rev. Public Health 2015, 36, 441–462. https://doi.org/10.1146/annurev-publhealth-031914-122921.

(461) Anothaisintawee, T.; Reutrakul, S.; Van Cauter, E.; Thakkinstian, A. Sleep Disturbances Compared to Traditional Risk Factors for Diabetes Development: Systematic Review and Meta-Analysis. Sleep Med. Rev. 2016, 30, 11–24. https://doi.org/10.1016/j.smrv.2015.10.002.

(462) Lee, S. W. H.; Ng, K. Y.; Chin, W. K. The Impact of Sleep Amount and Sleep Quality on Glycemic Control in Type 2 Diabetes: A Systematic Review and Meta-Analysis. Sleep Med. Rev. 2017, 31, 91–101. https://doi.org/10.1016/j.smrv.2016.02.001.

(463) Kesse-Guyot, E.; Baudry, J.; Assmann, K. E.; Galan, P.; Hercberg, S.; Lairon, D. Prospective Association between Consumption Frequency of Organic Food and Body Weight Change, Risk of Overweight or Obesity: Results from the NutriNet-Santé Study. Br. J. Nutr. 2017, 117 (2), 325–334. https://doi.org/10.1017/S0007114517000058.

(464) Baudry, J.; Lelong, H.; Adriouch, S.; Julia, C.; Allès, B.; Hercberg, S.; Touvier, M.; Lairon, D.; Galan, P.; Kesse-Guyot, E. Association between Organic Food Consumption and Metabolic Syndrome: Cross-Sectional Results from the NutriNet-Santé Study. Eur. J. Nutr. 2018, 57 (7), 2477–2488. https://doi.org/10.1007/s00394-017-1520-1.

(465) Cooper, G. S.; Bynum, M. L. K.; Somers, E. C. Recent Insights in the Epidemiology of Autoimmune Diseases: Improved Prevalence Estimates and Understanding of Clustering of Diseases. J. Autoimmun. 2009, 33 (3–4), 197–207. https://doi.org/10.1016/j.jaut.2009.09.008.

(466) Boyce, W. T.; Kobor, M. S. Development and the Epigenome: The “synapse” of Gene-Environment Interplay. Dev. Sci. 2015, 18 (1), 1–23. https://doi.org/10.1111/desc.12282.

(467) Tisoncik, J. R.; Korth, M. J.; Simmons, C. P.; Farrar, J.; Martin, T. R.; Katze, M. G. Into the Eye of the Cytokine Storm. Microbiol. Mol. Biol. Rev. MMBR 2012, 76 (1), 16–32. https://doi.org/10.1128/MMBR.05015-11.

(468) Mehta, P.; McAuley, D. F.; Brown, M.; Sanchez, E.; Tattersall, R. S.; Manson, J. J. COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. The Lancet 2020, 0 (0). https://doi.org/10.1016/S0140-6736(20)30628-0.

(469) Guirao, J. J.; Cabrera, C. M.; Jiménez, N.; Rincón, L.; Urra, J. M. High Serum IL-6 Values Increase the Risk of Mortality and the Severity of Pneumonia in Patients Diagnosed with COVID-19. Mol. Immunol. 2020, 128, 64–68. https://doi.org/10.1016/j.molimm.2020.10.006.

(470) Tang, Y.; Liu, J.; Zhang, D.; Xu, Z.; Ji, J.; Wen, C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front. Immunol. 2020, 11, 1708. https://doi.org/10.3389/fimmu.2020.01708.

(471) Grifoni, E.; Valoriani, A.; Cei, F.; Lamanna, R.; Gelli, A. M. G.; Ciambotti, B.; Vannucchi, V.; Moroni, F.; Pelagatti, L.; Tarquini, R.; Landini, G.; Vanni, S.; Masotti, L. Interleukin-6 as Prognosticator in Patients with COVID-19. J. Infect. 2020. https://doi.org/10.1016/j.jinf.2020.06.008.

(472) Pincemail, J.; Cavalier, E.; Charlier, C.; Cheramy-Bien, J.-P.; Brevers, E.; Courtois, A.; Fadeur, M.; Meziane, S.; Goff, C. L.; Misset, B.; Albert, A.; Defraigne, J.-O.; Rousseau, A.-F. Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxid. Basel Switz. 2021, 10 (2), 257. https://doi.org/10.3390/antiox10020257.

(473) Martín-Fernández, M.; Aller, R.; Heredia-Rodríguez, M.; Gómez-Sánchez, E.; Martínez-Paz, P.; Gonzalo-Benito, H.; Sánchez-de Prada, L.; Gorgojo, Ó.; Carnicero-Frutos, I.; Tamayo, E.; Tamayo-Velasco, Á. Lipid Peroxidation as a Hallmark of Severity in COVID-19 Patients. Redox Biol. 2021, 48, 102181. https://doi.org/10.1016/j.redox.2021.102181.

(474) Fakhrolmobasheri, M.; Mazaheri-Tehrani, S.; Kieliszek, M.; Zeinalian, M.; Abbasi, M.; Karimi, F.; Mozafari, A. M. COVID-19 and Selenium Deficiency: A Systematic Review. Biol. Trace Elem. Res. 2021. https://doi.org/10.1007/s12011-021-02997-4.

(475) Karkhanei, B.; Talebi Ghane, E.; Mehri, F. Evaluation of Oxidative Stress Level: Total Antioxidant Capacity, Total Oxidant Status and Glutathione Activity in Patients with COVID-19. New Microbes New Infect. 2021, 42, 100897. https://doi.org/10.1016/j.nmni.2021.100897.

(476) Kozlov, E. M.; Ivanova, E.; Grechko, A. V.; Wu, W.-K.; Starodubova, A. V.; Orekhov, A. N. Involvement of Oxidative Stress and the Innate Immune System in SARS-CoV-2 Infection. Dis. Basel Switz. 2021, 9 (1), 17. https://doi.org/10.3390/diseases9010017.

(477) Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. The Lancet 2020, 395 (10229), 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3.

(478) Ayres, J. S. A Metabolic Handbook for the COVID-19 Pandemic. Nat. Metab. 2020, 2 (7), 572–585. https://doi.org/10.1038/s42255-020-0237-2.

(479) Aghili, S. M. M.; Ebrahimpur, M.; Arjmand, B.; Shadman, Z.; Pejman Sani, M.; Qorbani, M.; Larijani, B.; Payab, M. Obesity in COVID-19 Era, Implications for Mechanisms, Comorbidities, and Prognosis: A Review and Meta-Analysis. Int. J. Obes. 2021, 45 (5), 998–1016. https://doi.org/10.1038/s41366-021-00776-8.

(480) Landstra, C. P.; de Koning, E. J. P. COVID-19 and Diabetes: Understanding the Interrelationship and Risks for a Severe Course. Front. Endocrinol. 2021, 12, 599. https://doi.org/10.3389/fendo.2021.649525.

(481) Amar, J.; Touront, N.; Ciron, A. M.; Pendaries, C. Interactions between Hypertension and Inflammatory Tone and the Effect on Blood Pressure and Outcomes in Patients with COVID-19. J. Clin. Hypertens. Greenwich Conn 2021, 23 (2), 238–244. https://doi.org/10.1111/jch.14137.

(482) Phelps, M.; Christensen, D. M.; Gerds, T.; Fosbøl, E.; Torp-Pedersen, C.; Schou, M.; Køber, L.; Kragholm, K.; Andersson, C.; Biering-Sørensen, T.; Christensen, H. C.; Andersen, M. P.; Gislason, G. Cardiovascular Comorbidities as Predictors for Severe COVID-19 Infection or Death. Eur. Heart J. Qual. Care Clin. Outcomes 2021, 7 (2), 172–180. https://doi.org/10.1093/ehjqcco/qcaa081.

(483) Tan, E. and col. COVID-19 in Patients with Autoimmune Diseases: Characteristics and Outcomes in a Multinational Network of Cohorts across Three Countries. Rheumatol. Oxf. Engl. 2021, 60 (SI), SI37–SI50. https://doi.org/10.1093/rheumatology/keab250.

(484) Liu, Y.; Sawalha, A. H.; Lu, Q. COVID-19 and Autoimmune Diseases. Curr. Opin. Rheumatol. 2021, 33 (2), 155–162. https://doi.org/10.1097/BOR.0000000000000776.

(485) Li, J.; Liu, H.-H.; Yin, X.-D.; Li, C.-C.; Wang, J. COVID-19 Illness and Autoimmune Diseases: Recent Insights. Inflamm. Res. Off. J. Eur. Histamine Res. Soc. Al 2021, 70 (4), 407–428. https://doi.org/10.1007/s00011-021-01446-1.

(486) Huang, B.; Niu, Y.; Zhao, W.; Bao, P.; Li, D. Reduced Sleep in the Week Prior to Diagnosis of COVID-19 Is Associated with the Severity of COVID-19. Nat. Sci. Sleep 2020, 12, 999–1007. https://doi.org/10.2147/NSS.S263488.

(487) Shi, L.; Lu, Z.-A.; Que, J.-Y.; Huang, X.-L.; Liu, L.; Ran, M.-S.; Gong, Y.-M.; Yuan, K.; Yan, W.; Sun, Y.-K.; Shi, J.; Bao, Y.-P.; Lu, L. Prevalence of and Risk Factors Associated With Mental Health Symptoms Among the General Population in China During the Coronavirus Disease 2019 Pandemic. JAMA Netw. Open 2020, 3 (7), e2014053. https://doi.org/10.1001/jamanetworkopen.2020.14053.

(488) Xiong, J.; Lipsitz, O.; Nasri, F.; Lui, L. M. W.; Gill, H.; Phan, L.; Chen-Li, D.; Iacobucci, M.; Ho, R.; Majeed, A.; McIntyre, R. S. Impact of COVID-19 Pandemic on Mental Health in the General Population: A Systematic Review. J. Affect. Disord. 2020, 277, 55–64. https://doi.org/10.1016/j.jad.2020.08.001.

(489) Ong, J. L.; Lau, T.; Massar, S. A. A.; Chong, Z. T.; Ng, B. K. L.; Koek, D.; Zhao, W.; Yeo, B. T. T.; Cheong, K.; Chee, M. W. L. COVID-19-Related Mobility Reduction: Heterogenous Effects on Sleep and Physical Activity Rhythms. Sleep 2021, 44 (2), zsaa179. https://doi.org/10.1093/sleep/zsaa179.

(490) Sallis, R.; Young, D. R.; Tartof, S. Y.; Sallis, J. F.; Sall, J.; Li, Q.; Smith, G. N.; Cohen, D. A. Physical Inactivity Is Associated with a Higher Risk for Severe COVID-19 Outcomes: A Study in 48 440 Adult Patients. Br. J. Sports Med. 2021. https://doi.org/10.1136/bjsports-2021-104080.

(491) Deschasaux-Tanguy, M.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F. S.; Allès, B.; Andreeva, V. A.; Baudry, J.; Charreire, H.; Deschamps, V.; Egnell, M.; Fezeu, L. K.; Galan, P.; Julia, C.; Kesse-Guyot, E.; Latino-Martel, P.; Oppert, J.-M.; Péneau, S.; Verdot, C.; Hercberg, S.; Touvier, M. Diet and Physical Activity during the Coronavirus Disease 2019 (COVID-19) Lockdown (March-May 2020): Results from the French NutriNet-Santé Cohort Study. Am. J. Clin. Nutr. 2021, 113 (4), 924–938. https://doi.org/10.1093/ajcn/nqaa336.

(492) Gao, Q. Y.; Chen, Y. X.; Fang, J. Y. 2019 Novel Coronavirus Infection and Gastrointestinal Tract. J. Dig. Dis. n/a (n/a). https://doi.org/10.1111/1751-2980.12851.

(493) Ahlawat, S.; Asha,  null; Sharma, K. K. Immunological Co-Ordination between Gut and Lungs in SARS-CoV-2 Infection. Virus Res. 2020, 286, 198103. https://doi.org/10.1016/j.virusres.2020.198103.

(494) Yeoh, Y. K.; Zuo, T.; Lui, G. C.-Y.; Zhang, F.; Liu, Q.; Li, A. Y.; Chung, A. C.; Cheung, C. P.; Tso, E. Y.; Fung, K. S.; Chan, V.; Ling, L.; Joynt, G.; Hui, D. S.-C.; Chow, K. M.; Ng, S. S. S.; Li, T. C.-M.; Ng, R. W.; Yip, T. C.; Wong, G. L.-H.; Chan, F. K.; Wong, C. K.; Chan, P. K.; Ng, S. C. Gut Microbiota Composition Reflects Disease Severity and Dysfunctional Immune Responses in Patients with COVID-19. Gut 2021. https://doi.org/10.1136/gutjnl-2020-323020.

(495) Zuo, T.; Zhang, F.; Lui, G. C. Y.; Yeoh, Y. K.; Li, A. Y. L.; Zhan, H.; Wan, Y.; Chung, A. C. K.; Cheung, C. P.; Chen, N.; Lai, C. K. C.; Chen, Z.; Tso, E. Y. K.; Fung, K. S. C.; Chan, V.; Ling, L.; Joynt, G.; Hui, D. S. C.; Chan, F. K. L.; Chan, P. K. S.; Ng, S. C. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology 2020, 159 (3), 944-955.e8. https://doi.org/10.1053/j.gastro.2020.05.048.

(496) Chattopadhyay, I.; Shankar, E. M. SARS-CoV-2-Indigenous Microbiota Nexus: Does Gut Microbiota Contribute to Inflammation and Disease Severity in COVID-19? Front. Cell. Infect. Microbiol. 2021, 11, 590874. https://doi.org/10.3389/fcimb.2021.590874.

(497) Zuo, T.; Liu, Q.; Zhang, F.; Lui, G. C.-Y.; Tso, E. Y.; Yeoh, Y. K.; Chen, Z.; Boon, S. S.; Chan, F. K.; Chan, P. K.; Ng, S. C. Depicting SARS-CoV-2 Faecal Viral Activity in Association with Gut Microbiota Composition in Patients with COVID-19. Gut 2021, 70 (2), 276–284. https://doi.org/10.1136/gutjnl-2020-322294.

(498) Yamamoto, S.; Saito, M.; Tamura, A.; Prawisuda, D.; Mizutani, T.; Yotsuyanagi, H. The Human Microbiome and COVID-19: A Systematic Review. PloS One 2021, 16 (6), e0253293. https://doi.org/10.1371/journal.pone.0253293.

(499) Sencio, V.; Machelart, A.; Robil, C.; Benech, N.; Hoffmann, E.; Galbert, C.; Deryuter, L.; Heumel, S.; Hantute-Ghesquier, A.; Flourens, A.; Brodin, P.; Infanti, F.; Richard, V.; Dubuisson, J.; Grangette, C.; Sulpice, T.; Wolowczuk, I.; Pinet, F.; Prévot, V.; Belouzard, S.; Briand, F.; Duterque-Coquillaud, M.; Sokol, H.; Trottein, F. Alteration of the Gut Microbiota Following SARS-CoV-2 Infection Correlates with Disease Severity in Hamsters. Gut Microbes 2022, 14 (1), 2018900. https://doi.org/10.1080/19490976.2021.2018900.

(500) Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P. A.; Cuapio, A.; Villapol, S. More than 50 Long-Term Effects of COVID-19: A Systematic Review and Meta-Analysis. Sci. Rep. 2021, 11 (1), 16144. https://doi.org/10.1038/s41598-021-95565-8.

(501) Carfì, A.; Bernabei, R.; Landi, F.; for the Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324 (6), 603–605. https://doi.org/10.1001/jama.2020.12603.

(502) Taquet, M.; Dercon, Q.; Luciano, S.; Geddes, J. R.; Husain, M.; Harrison, P. J. Incidence, Co-Occurrence, and Evolution of Long-COVID Features: A 6-Month Retrospective Cohort Study of 273,618 Survivors of COVID-19. PLoS Med. 2021, 18 (9), e1003773. https://doi.org/10.1371/journal.pmed.1003773.

(503) Raveendran, A. V.; Misra, A. Post COVID-19 Syndrome (“Long COVID”) and Diabetes: Challenges in Diagnosis and Management. Diabetes Metab. Syndr. 2021, 15 (5), 102235. https://doi.org/10.1016/j.dsx.2021.102235.

(504) Vimercati, L.; De Maria, L.; Quarato, M.; Caputi, A.; Gesualdo, L.; Migliore, G.; Cavone, D.; Sponselli, S.; Pipoli, A.; Inchingolo, F.; Scarano, A.; Lorusso, F.; Stefanizzi, P.; Tafuri, S. Association between Long COVID and Overweight/Obesity. J. Clin. Med. 2021, 10 (18), 4143. https://doi.org/10.3390/jcm10184143.

(505) Puntmann, V. O.; Carerj, M. L.; Wieters, I.; Fahim, M.; Arendt, C.; Hoffmann, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A. M.; Vehreschild, M.; Nagel, E. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020. https://doi.org/10.1001/jamacardio.2020.3557.

(506) Steardo, L.; Steardo, L.; Zorec, R.; Verkhratsky, A. Neuroinfection May Contribute to Pathophysiology and Clinical Manifestations of COVID-19. Acta Physiol. Oxf. Engl. 2020, 229 (3), e13473. https://doi.org/10.1111/apha.13473.

(507) Wu, Y.; Xu, X.; Chen, Z.; Duan, J.; Hashimoto, K.; Yang, L.; Liu, C.; Yang, C. Nervous System Involvement after Infection with COVID-19 and Other Coronaviruses. Brain. Behav. Immun. 2020, 87, 18–22. https://doi.org/10.1016/j.bbi.2020.03.031.

(508) Kabbani, N.; Olds, J. L. Does COVID19 Infect the Brain? If So, Smokers Might Be at a Higher Risk. Mol. Pharmacol. 2020, 97 (5), 351–353. https://doi.org/10.1124/molpharm.120.000014.

(509) Wang, X.-M.; Hamza, M.; Wu, T.-X.; Dionne, R. A. Upregulation of IL-6, IL-8 and CCL2 Gene Expression after Acute Inflammation: Correlation to Clinical Pain. Pain 2009, 142 (3), 275–283. https://doi.org/10.1016/j.pain.2009.02.001.

(510) Ramesh, G.; Didier, P. J.; England, J. D.; Santana-Gould, L.; Doyle-Meyers, L. A.; Martin, D. S.; Jacobs, M. B.; Philipp, M. T. Inflammation in the Pathogenesis of Lyme Neuroborreliosis. Am. J. Pathol. 2015, 185 (5), 1344–1360. https://doi.org/10.1016/j.ajpath.2015.01.024.

(511) Ransohoff, R. M. How Neuroinflammation Contributes to Neurodegeneration. Science 2016, 353 (6301), 777–783. https://doi.org/10.1126/science.aag2590.

(512) Beers, D. R.; Zhao, W.; Wang, J.; Zhang, X.; Wen, S.; Neal, D.; Thonhoff, J. R.; Alsuliman, A. S.; Shpall, E. J.; Rezvani, K.; Appel, S. H. ALS Patients’ Regulatory T Lymphocytes Are Dysfunctional, and Correlate with Disease Progression Rate and Severity. JCI Insight 2017, 2 (5). https://doi.org/10.1172/jci.insight.89530.

(513) Beers, D. R.; Appel, S. H. Immune Dysregulation in Amyotrophic Lateral Sclerosis: Mechanisms and Emerging Therapies. Lancet Neurol. 2019, 18 (2), 211–220. https://doi.org/10.1016/S1474-4422(18)30394-6.

(514) Taquet, M.; Luciano, S.; Geddes, J. R.; Harrison, P. J. Bidirectional Associations between COVID-19 and Psychiatric Disorder: Retrospective Cohort Studies of 62 354 COVID-19 Cases in the USA. Lancet Psychiatry 2021, 8 (2), 130–140. https://doi.org/10.1016/S2215-0366(20)30462-4.

(515) Taquet, M.; Geddes, J. R.; Husain, M.; Luciano, S.; Harrison, P. J. 6-Month Neurological and Psychiatric Outcomes in 236 379 Survivors of COVID-19: A Retrospective Cohort Study Using Electronic Health Records. Lancet Psychiatry 2021, 8 (5), 416–427. https://doi.org/10.1016/S2215-0366(21)00084-5.

(516) Ehrenfeld, M.; Tincani, A.; Andreoli, L.; Cattalini, M.; Greenbaum, A.; Kanduc, D.; Alijotas-Reig, J.; Zinserling, V.; Semenova, N.; Amital, H.; Shoenfeld, Y. Covid-19 and Autoimmunity. Autoimmun. Rev. 2020, 19 (8), 102597. https://doi.org/10.1016/j.autrev.2020.102597.

(517) Verdoni, L.; Mazza, A.; Gervasoni, A.; Martelli, L.; Ruggeri, M.; Ciuffreda, M.; Bonanomi, E.; D’Antiga, L. An Outbreak of Severe Kawasaki-like Disease at the Italian Epicentre of the SARS-CoV-2 Epidemic: An Observational Cohort Study. The Lancet 2020, 395 (10239), 1771–1778. https://doi.org/10.1016/S0140-6736(20)31103-X.

(518) Carvalho, T. COVID-19-Induced Kawasaki Disease. Nat. Med. 2020, 26 (12), 1807. https://doi.org/10.1038/s41591-020-01163-y.

(519) Riphagen, S.; Gomez, X.; Gonzalez-Martinez, C.; Wilkinson, N.; Theocharis, P. Hyperinflammatory Shock in Children during COVID-19 Pandemic. Lancet Lond. Engl. 2020, 395 (10237), 1607–1608. https://doi.org/10.1016/S0140-6736(20)31094-1.

(520) Belhadjer, Z.; Méot, M.; Bajolle, F.; Khraiche, D.; Legendre, A.; Abakka, S.; Auriau, J.; Grimaud, M.; Oualha, M.; Beghetti, M.; Wacker, J.; Ovaert, C.; Hascoet, S.; Selegny, M.; Malekzadeh-Milani, S.; Maltret, A.; Bosser, G.; Giroux, N.; Bonnemains, L.; Bordet, J.; Di Filippo, S.; Mauran, P.; Falcon-Eicher, S.; Thambo, J.-B.; Lefort, B.; Moceri, P.; Houyel, L.; Renolleau, S.; Bonnet, D. Acute Heart Failure in Multisystem Inflammatory Syndrome in Children (MIS-C) in the Context of Global SARS-CoV-2 Pandemic. Circulation 2020. https://doi.org/10.1161/CIRCULATIONAHA.120.048360.

(521) Bomhof, G.; Mutsaers, P. G. N. J.; Leebeek, F. W. G.; Te Boekhorst, P. A. W.; Hofland, J.; Croles, F. N.; Jansen, A. J. G. COVID-19-Associated Immune Thrombocytopenia. Br. J. Haematol. 2020, 190 (2), e61–e64. https://doi.org/10.1111/bjh.16850.

(522) Toscano, G.; Palmerini, F.; Ravaglia, S.; Ruiz, L.; Invernizzi, P.; Cuzzoni, M. G.; Franciotta, D.; Baldanti, F.; Daturi, R.; Postorino, P.; Cavallini, A.; Micieli, G. Guillain–Barré Syndrome Associated with SARS-CoV-2. N. Engl. J. Med. 2020. https://doi.org/10.1056/NEJMc2009191.

(523) Hasan, I.; Saif-Ur-Rahman, K. M.; Hayat, S.; Papri, N.; Jahan, I.; Azam, R.; Ara, G.; Islam, Z. Guillain-Barré Syndrome Associated with SARS-CoV-2 Infection: A Systematic Review and Individual Participant Data Meta-Analysis. J. Peripher. Nerv. Syst. JPNS 2020, 25 (4), 335–343. https://doi.org/10.1111/jns.12419.

(524) Lazarian, G.; Quinquenel, A.; Bellal, M.; Siavellis, J.; Jacquy, C.; Re, D.; Merabet, F.; Mekinian, A.; Braun, T.; Damaj, G.; Delmer, A.; Cymbalista, F. Autoimmune Haemolytic Anaemia Associated with COVID-19 Infection. Br. J. Haematol. 2020, 190 (1), 29–31. https://doi.org/10.1111/bjh.16794.

(525) Caso, F.; Costa, L.; Ruscitti, P.; Navarini, L.; Del Puente, A.; Giacomelli, R.; Scarpa, R. Could Sars-Coronavirus-2 Trigger Autoimmune and/or Autoinflammatory Mechanisms in Genetically Predisposed Subjects? Autoimmun. Rev. 2020, 19 (5), 102524. https://doi.org/10.1016/j.autrev.2020.102524.

(526) Tang, K.-T.; Hsu, B.-C.; Chen, D.-Y. Autoimmune and Rheumatic Manifestations Associated With COVID-19 in Adults: An Updated Systematic Review. Front. Immunol. 2021, 12, 645013. https://doi.org/10.3389/fimmu.2021.645013.

(527) Kanduc, D.; Shoenfeld, Y. On the Molecular Determinants of the SARS-CoV-2 Attack. Clin. Immunol. Orlando Fla 2020, 215, 108426. https://doi.org/10.1016/j.clim.2020.108426.

(528) Jumah, M.; Rahman, F.; Figgie, M.; Prasad, A.; Zampino, A.; Fadhil, A.; Palmer, K.; Buerki, R. A.; Gunzler, S.; Gundelly, P.; Abboud, H. COVID-19, HHV6 and MOG Antibody: A Perfect Storm. J. Neuroimmunol. 2021, 353, 577521. https://doi.org/10.1016/j.jneuroim.2021.577521.

(529) Balestrieri, E.; Minutolo, A.; Petrone, V.; Fanelli, M.; Iannetta, M.; Malagnino, V.; Zordan, M.; Vitale, P.; Charvet, B.; Horvat, B.; Bernardini, S.; Garaci, E.; Francesco, P. di; Vallebona, P. S.; Sarmati, L.; Grelli, S.; Andreoni, M.; Perron, H.; Matteucci, C. Evidence of the Pathogenic HERV-W Envelope Expression in T Lymphocytes in Association with the Respiratory Outcome of COVID-19 Patients. EBioMedicine 2021, 66. https://doi.org/10.1016/j.ebiom.2021.103341.

(530) Chen, T.; Song, J.; Liu, H.; Zheng, H.; Chen, C. Positive Epstein-Barr Virus Detection in Coronavirus Disease 2019 (COVID-19) Patients. Sci. Rep. 2021, 11 (1), 10902. https://doi.org/10.1038/s41598-021-90351-y.

(531) Gold, J. E.; Okyay, R. A.; Licht, W. E.; Hurley, D. J. Investigation of Long COVID Prevalence and Its Relationship to Epstein-Barr Virus Reactivation. Pathog. Basel Switz. 2021, 10 (6), 763. https://doi.org/10.3390/pathogens10060763.

(532) Virgin, H. W.; Wherry, E. J.; Ahmed, R. Redefining Chronic Viral Infection. Cell 2009, 138 (1), 30–50. https://doi.org/10.1016/j.cell.2009.06.036.

(533) Grinde, B. Herpesviruses: Latency and Reactivation – Viral Strategies and Host Response. J. Oral Microbiol. 2013, 5. https://doi.org/10.3402/jom.v5i0.22766.

(534) Root-Bernstein, R.; Fairweather, D. Complexities in the Relationship between Infection and Autoimmunity. Curr. Allergy Asthma Rep. 2014, 14 (1), 407. https://doi.org/10.1007/s11882-013-0407-3.

(535) Furman, D.; Jojic, V.; Sharma, S.; Shen-Orr, S. S.; Angel, C. J. L.; Onengut-Gumuscu, S.; Kidd, B. A.; Maecker, H. T.; Concannon, P.; Dekker, C. L.; Thomas, P. G.; Davis, M. M. Cytomegalovirus Infection Enhances the Immune Response to Influenza. Sci. Transl. Med. 2015, 7 (281), 281ra43. https://doi.org/10.1126/scitranslmed.aaa2293.

(536) Rogiers, O.; Frising, U. C.; Kucharíková, S.; Jabra-Rizk, M. A.; van Loo, G.; Van Dijck, P.; Wullaert, A. Candidalysin Crucially Contributes to Nlrp3 Inflammasome Activation by Candida Albicans Hyphae. mBio 2019, 10 (1), e02221-18. https://doi.org/10.1128/mBio.02221-18.

(537) Arvikar, S. L.; Hasturk, H.; Strle, K.; Stephens, D.; Bolster, M. B.; Collier, D. S.; Kantarci, A.; Steere, A. C. Periodontal Inflammation and Distinct Inflammatory Profiles in Saliva and Gingival Crevicular Fluid Compared with Serum and Joints in Rheumatoid Arthritis Patients. J. Periodontol. 2021, 92 (10), 1379–1391. https://doi.org/10.1002/JPER.20-0051.

(538) von Herrath, M. G.; Fujinami, R. S.; Whitton, J. L. Microorganisms and Autoimmunity: Making the Barren Field Fertile? Nat. Rev. Microbiol. 2003, 1 (2), 151–157. https://doi.org/10.1038/nrmicro754.

(539) Park, H.; Li, Z.; Yang, X. O.; Chang, S. H.; Nurieva, R.; Wang, Y.-H.; Wang, Y.; Hood, L.; Zhu, Z.; Tian, Q.; Dong, C. A Distinct Lineage of CD4 T Cells Regulates Tissue Inflammation by Producing Interleukin 17. Nat. Immunol. 2005, 6 (11), 1133–1141. https://doi.org/10.1038/ni1261.

(540) Gehlert, T.; Devergne, O.; Niedobitek, G. Epstein-Barr Virus (EBV) Infection and Expression of the Interleukin-12 Family Member EBV-Induced Gene 3 (EBI3) in Chronic Inflammatory Bowel Disease. J. Med. Virol. 2004, 73 (3), 432–438. https://doi.org/10.1002/jmv.20109.

(541) Singh, S. K.; Girschick, H. J. Lyme Borreliosis: From Infection to Autoimmunity. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2004, 10 (7), 598–614. https://doi.org/10.1111/j.1469-0691.2004.00895.x.

(542) Posnett, D. N. Herpesviruses and Autoimmunity. Curr. Opin. Investig. Drugs Lond. Engl. 2000 2008, 9 (5), 505–514.

(543) Lidar, M.; Lipschitz, N.; Langevitz, P.; Shoenfeld, Y. The Infectious Etiology of Vasculitis. Autoimmunity 2009, 42 (5), 432–438. https://doi.org/10.1080/08916930802613210.

(544) Ahlgren, K. M.; Moretti, S.; Lundgren, B. A.; Karlsson, I.; Ahlin, E.; Norling, A.; Hallgren, A.; Perheentupa, J.; Gustafsson, J.; Rorsman, F.; Crewther, P. E.; Rönnelid, J.; Bensing, S.; Scott, H. S.; Kämpe, O.; Romani, L.; Lobell, A. Increased IL-17A Secretion in Response to Candida Albicans in Autoimmune Polyendocrine Syndrome Type 1 and Its Animal Model. Eur. J. Immunol. 2011, 41 (1), 235–245. https://doi.org/10.1002/eji.200939883.

(545) Sultanova, A.; Cistjakovs, M.; Gravelsina, S.; Chapenko, S.; Roga, S.; Cunskis, E.; Nora-Krukle, Z.; Groma, V.; Ventina, I.; Murovska, M. Association of Active Human Herpesvirus-6 (HHV-6) Infection with Autoimmune Thyroid Gland Diseases. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2017, 23 (1), 50.e1-50.e5. https://doi.org/10.1016/j.cmi.2016.09.023.

(546) Arvikar, S. L.; Crowley, J. T.; Sulka, K. B.; Steere, A. C. Autoimmune Arthritides, Rheumatoid Arthritis, Psoriatic Arthritis, or Peripheral Spondyloarthritis Following Lyme Disease. Arthritis Rheumatol. Hoboken NJ 2017, 69 (1), 194–202. https://doi.org/10.1002/art.39866.

(547) Li, X.; Chen, N.; You, P.; Peng, T.; Chen, G.; Wang, J.; Li, J.; Liu, Y. The Status of Epstein-Barr Virus Infection in Intestinal Mucosa of Chinese Patients with Inflammatory Bowel Disease. Digestion 2019, 99 (2), 126–132. https://doi.org/10.1159/000489996.

(548) Cook, C. H.; Trgovcich, J.; Zimmerman, P. D.; Zhang, Y.; Sedmak, D. D. Lipopolysaccharide, Tumor Necrosis Factor Alpha, or Interleukin-1beta Triggers Reactivation of Latent Cytomegalovirus in Immunocompetent Mice. J. Virol. 2006, 80 (18), 9151–9158. https://doi.org/10.1128/JVI.00216-06.

(549) Bennett, J. M.; Glaser, R.; Malarkey, W. B.; Beversdorf, D. Q.; Peng, J.; Kiecolt-Glaser, J. K. Inflammation and Reactivation of Latent Herpesviruses in Older Adults. Brain. Behav. Immun. 2012, 26 (5), 739–746. https://doi.org/10.1016/j.bbi.2011.11.007.

(550) Lehner, G. F.; Klein, S. J.; Zoller, H.; Peer, A.; Bellmann, R.; Joannidis, M. Correlation of Interleukin-6 with Epstein-Barr Virus Levels in COVID-19. Crit. Care Lond. Engl. 2020, 24 (1), 657. https://doi.org/10.1186/s13054-020-03384-6.

(551) Dunn, N.; Kharlamova, N.; Fogdell-Hahn, A. The Role of Herpesvirus 6A and 6B in Multiple Sclerosis and Epilepsy. Scand. J. Immunol. 2020, 92 (6), e12984. https://doi.org/10.1111/sji.12984.

(552) Ramesh, G.; Santana-Gould, L.; Inglis, F. M.; England, J. D.; Philipp, M. T. The Lyme Disease Spirochete Borrelia Burgdorferi Induces Inflammation and Apoptosis in Cells from Dorsal Root Ganglia. J. Neuroinflammation 2013, 10, 88. https://doi.org/10.1186/1742-2094-10-88.

(553) Fallon, B. A.; Levin, E. S.; Schweitzer, P. J.; Hardesty, D. Inflammation and Central Nervous System Lyme Disease. Neurobiol. Dis. 2010, 37 (3), 534–541. https://doi.org/10.1016/j.nbd.2009.11.016.

(554) Koedel, U.; Fingerle, V.; Pfister, H.-W. Lyme Neuroborreliosis-Epidemiology, Diagnosis and Management. Nat. Rev. Neurol. 2015, 11 (8), 446–456. https://doi.org/10.1038/nrneurol.2015.121.

(555) Garcia-Monco, J. C.; Benach, J. L. Lyme Neuroborreliosis: Clinical Outcomes, Controversy, Pathogenesis, and Polymicrobial Infections. Ann. Neurol. 2019, 85 (1), 21–31. https://doi.org/10.1002/ana.25389.

(556) Mygland, A.; Ljøstad, U.; Fingerle, V.; Rupprecht, T.; Schmutzhard, E.; Steiner, I.; European Federation of Neurological Societies. EFNS Guidelines on the Diagnosis and Management of European Lyme Neuroborreliosis. Eur. J. Neurol. 2010, 17 (1), 8–16, e1-4. https://doi.org/10.1111/j.1468-1331.2009.02862.x.

(557) Shroff, G.; Hopf-Seidel, P. A Novel Scoring System Approach to Assess Patients with Lyme Disease (Nutech Functional Score). J. Glob. Infect. Dis. 2018, 10 (1), 3–6. https://doi.org/10.4103/jgid.jgid_11_17.

(558) Lünemann, J. D.; Gelderblom, H.; Sospedra, M.; Quandt, J. A.; Pinilla, C.; Marques, A.; Martin, R. Cerebrospinal Fluid-Infiltrating CD4+ T Cells Recognize Borrelia Burgdorferi Lysine-Enriched Protein Domains and Central Nervous System Autoantigens in Early Lyme Encephalitis. Infect. Immun. 2007, 75 (1), 243–251. https://doi.org/10.1128/IAI.01110-06.

(559) Ramesh, G.; Benge, S.; Pahar, B.; Philipp, M. T. A Possible Role for Inflammation in Mediating Apoptosis of Oligodendrocytes as Induced by the Lyme Disease Spirochete Borrelia Burgdorferi. J. Neuroinflammation 2012, 9 (1), 72. https://doi.org/10.1186/1742-2094-9-72.

(560) Brissette, C. A.; Kees, E. D.; Burke, M. M.; Gaultney, R. A.; Floden, A. M.; Watt, J. A. The Multifaceted Responses of Primary Human Astrocytes and Brain Microvascular Endothelial Cells to the Lyme Disease Spirochete, Borrelia Burgdorferi. ASN Neuro 2013, 5 (3), 221–229. https://doi.org/10.1042/AN20130010.

(561) Greenmyer, J. R.; Gaultney, R. A.; Brissette, C. A.; Watt, J. A. Primary Human Microglia Are Phagocytically Active and Respond to Borrelia Burgdorferi With Upregulation of Chemokines and Cytokines. Front. Microbiol. 2018, 9, 811. https://doi.org/10.3389/fmicb.2018.00811.

(562) Bolz, D. D.; Weis, J. J. Molecular Mimicry to Borrelia Burgdorferi: Pathway to Autoimmunity? Autoimmunity 2004, 37 (5), 387–392. https://doi.org/10.1080/08916930410001713098.

(563) Burakgazi, A. Z. Lyme Disease -Induced Polyradiculopathy Mimicking Amyotrophic Lateral Sclerosis. Int. J. Neurosci. 2014, 124 (11), 859–862. https://doi.org/10.3109/00207454.2013.879582.

(564) Strle, K.; Sulka, K. B.; Pianta, A.; Crowley, J. T.; Arvikar, S. L.; Anselmo, A.; Sadreyev, R.; Steere, A. C. T-Helper 17 Cell Cytokine Responses in Lyme Disease Correlate With Borrelia Burgdorferi Antibodies During Early Infection and With Autoantibodies Late in the Illness in Patients With Antibiotic-Refractory Lyme Arthritis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2017, 64 (7), 930–938. https://doi.org/10.1093/cid/cix002.

(565) Lochhead, R. B.; Strle, K.; Arvikar, S. L.; Weis, J. J.; Steere, A. C. Lyme Arthritis: Linking Infection, Inflammation and Autoimmunity. Nat. Rev. Rheumatol. 2021, 17 (8), 449–461. https://doi.org/10.1038/s41584-021-00648-5.

(566) Herrmann, C.; Gern, L. Survival of Ixodes Ricinus (Acari: Ixodidae) under Challenging Conditions of Temperature and Humidity Is Influenced by Borrelia Burgdorferi Sensu Lato Infection. J. Med. Entomol. 2010, 47 (6), 1196–1204. https://doi.org/10.1603/me10111.

(567) Cuevas, A.; Saavedra, N.; Salazar, L. A.; Abdalla, D. S. P. Modulation of Immune Function by Polyphenols: Possible Contribution of Epigenetic Factors. Nutrients 2013, 5 (7), 2314–2332. https://doi.org/10.3390/nu5072314.

(568) Ding, S.; Jiang, H.; Fang, J. Regulation of Immune Function by Polyphenols. J. Immunol. Res. 2018, 2018. https://doi.org/10.1155/2018/1264074.

(569) Hachimura, S.; Totsuka, M.; Hosono, A. Immunomodulation by Food: Impact on Gut Immunity and Immune Cell Function. Biosci. Biotechnol. Biochem. 2018, 82 (4), 584–599. https://doi.org/10.1080/09168451.2018.1433017.

(570) Shakoor, H.; Feehan, J.; Apostolopoulos, V.; Platat, C.; Al Dhaheri, A. S.; Ali, H. I.; Ismail, L. C.; Bosevski, M.; Stojanovska, L. Immunomodulatory Effects of Dietary Polyphenols. Nutrients 2021, 13 (3), 728. https://doi.org/10.3390/nu13030728.

(571) Heinz, S. A.; Henson, D. A.; Austin, M. D.; Jin, F.; Nieman, D. C. Quercetin Supplementation and Upper Respiratory Tract Infection: A Randomized Community Clinical Trial. Pharmacol. Res. 2010, 62 (3), 237–242. https://doi.org/10.1016/j.phrs.2010.05.001.

(572) Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M. T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients 2016, 8 (3), 167. https://doi.org/10.3390/nu8030167.

(573) Derosa, G.; Maffioli, P.; D’Angelo, A.; Di Pierro, F. A Role for Quercetin in Coronavirus Disease 2019 (COVID-19). Phytother. Res. PTR 2020. https://doi.org/10.1002/ptr.6887.

(574) Hollman, P. C.; van Trijp, J. M.; Buysman, M. N.; van der Gaag, M. S.; Mengelers, M. J.; de Vries, J. H.; Katan, M. B. Relative Bioavailability of the Antioxidant Flavonoid Quercetin from Various Foods in Man. FEBS Lett. 1997, 418 (1–2), 152–156. https://doi.org/10.1016/s0014-5793(97)01367-7.

(575) Anand David, A. V.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn. Rev. 2016, 10 (20), 84–89. https://doi.org/10.4103/0973-7847.194044.

(576) Hsu, S. Compounds Derived from Epigallocatechin-3-Gallate (EGCG) as a Novel Approach to the Prevention of Viral Infections. Inflamm. Allergy Drug Targets 2015, 14 (1), 13–18. https://doi.org/10.2174/1871528114666151022150122.

(577) Xu, J.; Xu, Z.; Zheng, W. A Review of the Antiviral Role of Green Tea Catechins. Mol. Basel Switz. 2017, 22 (8). https://doi.org/10.3390/molecules22081337.

(578) Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols. J. Agric. Food Chem. 2019, 67 (4), 1029–1043. https://doi.org/10.1021/acs.jafc.8b06146.

(579) Pannu, N.; Bhatnagar, A. Resveratrol: From Enhanced Biosynthesis and Bioavailability to Multitargeting Chronic Diseases. Biomed. Pharmacother. Biomedecine Pharmacother. 2019, 109, 2237–2251. https://doi.org/10.1016/j.biopha.2018.11.075.

(580) Malaguarnera, L. Influence of Resveratrol on the Immune Response. Nutrients 2019, 11 (5). https://doi.org/10.3390/nu11050946.

(581) Mhatre, S.; Srivastava, T.; Naik, S.; Patravale, V. Antiviral Activity of Green Tea and Black Tea Polyphenols in Prophylaxis and Treatment of COVID-19: A Review. Phytomedicine 2020. https://doi.org/10.1016/j.phymed.2020.153286.

(582) Goncagul, G.; Ayaz, E. Antimicrobial Effect of Garlic (Allium Sativum). Recent Patents Anti-Infect. Drug Disc. 2010, 5 (1), 91–93. https://doi.org/10.2174/157489110790112536.

(583) Bayan, L.; Koulivand, P. H.; Gorji, A. Garlic: A Review of Potential Therapeutic Effects. Avicenna J. Phytomedicine 2014, 4 (1), 1–14.

(584) Arreola, R.; Quintero-Fabián, S.; López-Roa, R. I.; Flores-Gutiérrez, E. O.; Reyes-Grajeda, J. P.; Carrera-Quintanar, L.; Ortuño-Sahagún, D. Immunomodulation and Anti-Inflammatory Effects of Garlic Compounds. J. Immunol. Res. 2015, 2015, 401630. https://doi.org/10.1155/2015/401630.

(585) Serrano, H. D. A.; Mariezcurrena-Berasain, M. A.; Del Carmen Gutiérrez Castillo, A.; Carranza, B. V.; Pliego, A. B.; Rojas, M. T.; Anele, U. Y.; Salem, A. Z. M.; Rivas-Caceres, R. R. Antimicrobial Resistance of Three Common Molecularly Identified Pathogenic Bacteria to Allium Aqueous Extracts. Microb. Pathog. 2020, 142, 104028. https://doi.org/10.1016/j.micpath.2020.104028.

(586) Said, M. M.; Watson, C.; Grando, D. Garlic Alters the Expression of Putative Virulence Factor Genes SIR2 and ECE1 in Vulvovaginal C. Albicans Isolates. Sci. Rep. 2020, 10 (1), 3615. https://doi.org/10.1038/s41598-020-60178-0.

(587) Lissiman, E.; Bhasale, A. L.; Cohen, M. Garlic for the Common Cold. Cochrane Database Syst. Rev. 2014, No. 11, CD006206. https://doi.org/10.1002/14651858.CD006206.pub4.

(588) Showing Food Garlic – FooDB. https://foodb.ca/foods/FOOD00008 (accessed 2021-12-03).

(589) Simopoulos, A. P. Omega-3 Fatty Acids in Inflammation and Autoimmune Diseases. J. Am. Coll. Nutr. 2002, 21 (6), 495–505. https://doi.org/10.1080/07315724.2002.10719248.

(590) Li, X.; Bi, X.; Wang, S.; Zhang, Z.; Li, F.; Zhao, A. Z. Therapeutic Potential of ω-3 Polyunsaturated Fatty Acids in Human Autoimmune Diseases. Front. Immunol. 2019, 10, 2241. https://doi.org/10.3389/fimmu.2019.02241.

(591) Abdolmaleki, F.; Kovanen, P. T.; Mardani, R.; Gheibi-Hayat, S. M.; Bo, S.; Sahebkar, A. Resolvins: Emerging Players in Autoimmune and Inflammatory Diseases. Clin. Rev. Allergy Immunol. 2020, 58 (1), 82–91. https://doi.org/10.1007/s12016-019-08754-9.

(592) Gutiérrez, S.; Svahn, S. L.; Johansson, M. E. Effects of Omega-3 Fatty Acids on Immune Cells. Int. J. Mol. Sci. 2019, 20 (20). https://doi.org/10.3390/ijms20205028.

(593) Wu, C.; Yosef, N.; Thalhamer, T.; Zhu, C.; Xiao, S.; Kishi, Y.; Regev, A.; Kuchroo, V. K. Induction of Pathogenic TH17 Cells by Inducible Salt-Sensing Kinase SGK1. Nature 2013, 496 (7446), 513–517. https://doi.org/10.1038/nature11984.

(594) Kleinewietfeld, M.; Manzel, A.; Titze, J.; Kvakan, H.; Yosef, N.; Linker, R. A.; Muller, D. N.; Hafler, D. A. Sodium Chloride Drives Autoimmune Disease by the Induction of Pathogenic TH17 Cells. Nature 2013, 496 (7446), 518–522. https://doi.org/10.1038/nature11868.

(595) Sharif, K.; Amital, H.; Shoenfeld, Y. The Role of Dietary Sodium in Autoimmune Diseases: The Salty Truth. Autoimmun. Rev. 2018, 17 (11), 1069–1073. https://doi.org/10.1016/j.autrev.2018.05.007.

(596) Pasala, S.; Barr, T.; Messaoudi, I. Impact of Alcohol Abuse on the Adaptive Immune System. Alcohol Res. Curr. Rev. 2015, 37 (2), 185–197.

(597) Boule, L. A.; Kovacs, E. J. Alcohol, Aging, and Innate Immunity. J. Leukoc. Biol. 2017, 102 (1), 41–55. https://doi.org/10.1189/jlb.4RU1016-450R.

(598) Hart, B. L. Biological Basis of the Behavior of Sick Animals. Neurosci. Biobehav. Rev. 1988, 12 (2), 123–137. https://doi.org/10.1016/s0149-7634(88)80004-6.

(599) Slavich, G. M. Psychoneuroimmunology of Stress and Mental Health. In The Oxford Handbook of Stress and Mental Health; Harkness, K. L., Hayden, E. P., Eds.; Oxford University Press, 2020; pp 518–546. https://doi.org/10.1093/oxfordhb/9780190681777.013.24.

(600) Anisman, H.; Matheson, K. Stress, Depression, and Anhedonia: Caveats Concerning Animal Models. Neurosci. Biobehav. Rev. 2005, 29 (4–5), 525–546. https://doi.org/10.1016/j.neubiorev.2005.03.007.

(601) De La Garza, R. Endotoxin- or pro-Inflammatory Cytokine-Induced Sickness Behavior as an Animal Model of Depression: Focus on Anhedonia. Neurosci. Biobehav. Rev. 2005, 29 (4–5), 761–770. https://doi.org/10.1016/j.neubiorev.2005.03.016.

(602) Pecchi, E.; Dallaporta, M.; Jean, A.; Thirion, S.; Troadec, J.-D. Prostaglandins and Sickness Behavior: Old Story, New Insights. Physiol. Behav. 2009, 97 (3–4), 279–292. https://doi.org/10.1016/j.physbeh.2009.02.040.

(603) Dantzer, R.; O’Connor, J. C.; Freund, G. G.; Johnson, R. W.; Kelley, K. W. From Inflammation to Sickness and Depression: When the Immune System Subjugates the Brain. Nat. Rev. Neurosci. 2008, 9 (1), 46–56. https://doi.org/10.1038/nrn2297.

(604) Miller, A. H.; Maletic, V.; Raison, C. L. Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biol. Psychiatry 2009, 65 (9), 732–741. https://doi.org/10.1016/j.biopsych.2008.11.029.

(605) Irwin, M. R.; Cole, S. W. Reciprocal Regulation of the Neural and Innate Immune Systems. Nat. Rev. Immunol. 2011, 11 (9), 625–632. https://doi.org/10.1038/nri3042.

(606) Raison, C. L.; Miller, A. H. Is Depression an Inflammatory Disorder? Curr. Psychiatry Rep. 2011, 13 (6), 467–475. https://doi.org/10.1007/s11920-011-0232-0.

(607) Besedovsky, H.; del Rey, A.; Sorkin, E.; Dinarello, C. A. Immunoregulatory Feedback between Interleukin-1 and Glucocorticoid Hormones. Science 1986, 233 (4764), 652–654. https://doi.org/10.1126/science.3014662.

(608) Berkenbosch, F.; van Oers, J.; del Rey, A.; Tilders, F.; Besedovsky, H. Corticotropin-Releasing Factor-Producing Neurons in the Rat Activated by Interleukin-1. Science 1987, 238 (4826), 524–526. https://doi.org/10.1126/science.2443979.

(609) Miller, G. E.; Cohen, S.; Ritchey, A. K. Chronic Psychological Stress and the Regulation of Pro-Inflammatory Cytokines: A Glucocorticoid-Resistance Model. Health Psychol. Off. J. Div. Health Psychol. Am. Psychol. Assoc. 2002, 21 (6), 531–541. https://doi.org/10.1037//0278-6133.21.6.531.

(610) Wu, T.-T.; Li, W.-M.; Yao, Y.-M. Interactions between Autophagy and Inhibitory Cytokines. Int. J. Biol. Sci. 2016, 12 (7), 884–897. https://doi.org/10.7150/ijbs.15194.

(611) Jiang, G.-M.; Tan, Y.; Wang, H.; Peng, L.; Chen, H.-T.; Meng, X.-J.; Li, L.-L.; Liu, Y.; Li, W.-F.; Shan, H. The Relationship between Autophagy and the Immune System and Its Applications for Tumor Immunotherapy. Mol. Cancer 2019, 18 (1), 17. https://doi.org/10.1186/s12943-019-0944-z.

(612) Ayres, J. S.; Schneider, D. S. The Role of Anorexia in Resistance and Tolerance to Infections in Drosophila. PLoS Biol. 2009, 7 (7), e1000150. https://doi.org/10.1371/journal.pbio.1000150.

(613) Ho Yoo, S.; Abdelmegeed, M. A.; Song, B.-J. Activation of PPARα by Wy-14643 Ameliorates Systemic Lipopolysaccharide-Induced Acute Lung Injury. Biochem. Biophys. Res. Commun. 2013, 436 (3), 10.1016/j.bbrc.2013.05.073. https://doi.org/10.1016/j.bbrc.2013.05.073.

(614) Yang, L.; Xie, M.; Yang, M.; Yu, Y.; Zhu, S.; Hou, W.; Kang, R.; Lotze, M. T.; Billiar, T. R.; Wang, H.; Cao, L.; Tang, D. PKM2 Regulates the Warburg Effect and Promotes HMGB1 Release in Sepsis. Nat. Commun. 2014, 5, 4436. https://doi.org/10.1038/ncomms5436.

(615) Wang, A.; Huen, S. C.; Luan, H. H.; Yu, S.; Zhang, C.; Gallezot, J.-D.; Booth, C. J.; Medzhitov, R. Opposing Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral Inflammation. Cell 2016, 166 (6), 1512-1525.e12. https://doi.org/10.1016/j.cell.2016.07.026.

(616) Liu, L.; Lu, Y.; Martinez, J.; Bi, Y.; Lian, G.; Wang, T.; Milasta, S.; Wang, J.; Yang, M.; Liu, G.; Green, D. R.; Wang, R. Proinflammatory Signal Suppresses Proliferation and Shifts Macrophage Metabolism from Myc-Dependent to HIF1α-Dependent. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (6), 1564–1569. https://doi.org/10.1073/pnas.1518000113.

(617) Rao, S.; Schieber, A. M. P.; O’Connor, C. P.; Leblanc, M.; Michel, D.; Ayres, J. S. Pathogen-Mediated Inhibition of Anorexia Promotes Host Survival and Transmission. Cell 2017, 168 (3), 503-516.e12. https://doi.org/10.1016/j.cell.2017.01.006.

(618) Medzhitov, R.; Schneider, D. S.; Soares, M. P. Disease Tolerance as a Defense Strategy. Science 2012, 335 (6071), 936–941. https://doi.org/10.1126/science.1214935.

(619) Langley, R. J. and col. An Integrated Clinico-Metabolomic Model Improves Prediction of Death in Sepsis. Sci. Transl. Med. 2013, 5 (195), 195ra95. https://doi.org/10.1126/scitranslmed.3005893.

(620) Longo, V. D.; Mattson, M. P. Fasting: Molecular Mechanisms and Clinical Applications. Cell Metab. 2014, 19 (2), 181–192. https://doi.org/10.1016/j.cmet.2013.12.008.

(621) Steven, S.; Hollingsworth, K. G.; Al-Mrabeh, A.; Avery, L.; Aribisala, B.; Caslake, M.; Taylor, R. Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders. Diabetes Care 2016, 39 (5), 808–815. https://doi.org/10.2337/dc15-1942.

(622) Mattson, M. P.; Longo, V. D.; Harvie, M. Impact of Intermittent Fasting on Health and Disease Processes. Ageing Res. Rev. 2017, 39, 46–58. https://doi.org/10.1016/j.arr.2016.10.005.

(623) Francesco, A. D.; Germanio, C. D.; Bernier, M.; Cabo, R. de. A Time to Fast. Science 2018, 362 (6416), 770–775. https://doi.org/10.1126/science.aau2095.

(624) MacDonald, L.; Radler, M.; Paolini, A. G.; Kent, S. Calorie Restriction Attenuates LPS-Induced Sickness Behavior and Shifts Hypothalamic Signaling Pathways to an Anti-Inflammatory Bias. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301 (1), R172-184. https://doi.org/10.1152/ajpregu.00057.2011.

(625) Zenz, G.; Jačan, A.; Reichmann, F.; Farzi, A.; Holzer, P. Intermittent Fasting Exacerbates the Acute Immune and Behavioral Sickness Response to the Viral Mimic Poly(I:C) in Mice. Front. Neurosci. 2019, 13. https://doi.org/10.3389/fnins.2019.00359.

(626) Choi, I. Y.; Piccio, L.; Childress, P.; Bollman, B.; Ghosh, A.; Brandhorst, S.; Suarez, J.; Michalsen, A.; Cross, A. H.; Morgan, T. E.; Wei, M.; Paul, F.; Bock, M.; Longo, V. D. Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep. 2016, 15 (10), 2136–2146. https://doi.org/10.1016/j.celrep.2016.05.009.

(627) Cignarella, F.; Cantoni, C.; Ghezzi, L.; Salter, A.; Dorsett, Y.; Chen, L.; Fontana, L.; Weinstock, G. M.; Cross, A. H.; Zhou, Y.; Piccio, L. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metab. 2018, 27 (6), 1222-1235.e6. https://doi.org/10.1016/j.cmet.2018.05.006.

(628) Gordon, J. I.; Dewey, K. G.; Mills, D. A.; Medzhitov, R. M. The Human Gut Microbiota and Undernutrition. Sci. Transl. Med. 2012, 4 (137), 137ps12. https://doi.org/10.1126/scitranslmed.3004347.

(629) Page, A.-L.; de Rekeneire, N.; Sayadi, S.; Aberrane, S.; Janssens, A.-C.; Rieux, C.; Djibo, A.; Manuguerra, J.-C.; Ducou-le-Pointe, H.; Grais, R. F.; Schaefer, M.; Guerin, P. J.; Baron, E. Infections in Children Admitted with Complicated Severe Acute Malnutrition in Niger. PloS One 2013, 8 (7), e68699. https://doi.org/10.1371/journal.pone.0068699.

(630) Youm, Y.-H.; Nguyen, K. Y.; Grant, R. W.; Goldberg, E. L.; Bodogai, M.; Kim, D.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T. D.; Kang, S.; Horvath, T. L.; Fahmy, T. M.; Crawford, P. A.; Biragyn, A.; Alnemri, E.; Dixit, V. D. Ketone Body β-Hydroxybutyrate Blocks the NLRP3 Inflammasome-Mediated Inflammatory Disease. Nat. Med. 2015, 21 (3), 263–269. https://doi.org/10.1038/nm.3804.

(631) Goldberg, E. L.; Molony, R. D.; Kudo, E.; Sidorov, S.; Kong, Y.; Dixit, V. D.; Iwasaki, A. Ketogenic Diet Activates Protective Γδ T Cell Responses against Influenza Virus Infection. Sci. Immunol. 2019, 4 (41). https://doi.org/10.1126/sciimmunol.aav2026.

(632) Goldberg, E. L.; Shchukina, I.; Asher, J. L.; Sidorov, S.; Artyomov, M. N.; Dixit, V. D. Ketogenesis Activates Metabolically Protective Γδ T Cells in Visceral Adipose Tissue. Nat. Metab. 2020, 2 (1), 50–61. https://doi.org/10.1038/s42255-019-0160-6.

(633) Hirschberger, S.; Strauß, G.; Effinger, D.; Marstaller, X.; Ferstl, A.; Müller, M. B.; Wu, T.; Hübner, M.; Rahmel, T.; Mascolo, H.; Exner, N.; Heß, J.; Kreth, F. W.; Unger, K.; Kreth, S. Very-Low-Carbohydrate Diet Enhances Human T-Cell Immunity through Immunometabolic Reprogramming. EMBO Mol. Med. 2021, 13 (8), e14323. https://doi.org/10.15252/emmm.202114323.

(634) Bock, M.; Karber, M.; Kuhn, H. Ketogenic Diets Attenuate Cyclooxygenase and Lipoxygenase Gene Expression in Multiple Sclerosis. EBioMedicine 2018, 36, 293–303. https://doi.org/10.1016/j.ebiom.2018.08.057.

(635) Brenton, J. N.; Banwell, B.; Bergqvist, A. G. C.; Lehner-Gulotta, D.; Gampper, L.; Leytham, E.; Coleman, R.; Goldman, M. D. Pilot Study of a Ketogenic Diet in Relapsing-Remitting MS. Neurol. Neuroimmunol. Neuroinflammation 2019, 6 (4), e565. https://doi.org/10.1212/NXI.0000000000000565.

(636) Lee, J. E.; Titcomb, T. J.; Bisht, B.; Rubenstein, L. M.; Louison, R.; Wahls, T. L. A Modified MCT-Based Ketogenic Diet Increases Plasma β-Hydroxybutyrate but Has Less Effect on Fatigue and Quality of Life in People with Multiple Sclerosis Compared to a Modified Paleolithic Diet: A Waitlist-Controlled, Randomized Pilot Study. J. Am. Coll. Nutr. 2020, 1–13. https://doi.org/10.1080/07315724.2020.1734988.

(637) Bahr, L. S.; Bock, M.; Liebscher, D.; Bellmann-Strobl, J.; Franz, L.; Prüß, A.; Schumann, D.; Piper, S. K.; Kessler, C. S.; Steckhan, N.; Michalsen, A.; Paul, F.; Mähler, A. Ketogenic Diet and Fasting Diet as Nutritional Approaches in Multiple Sclerosis (NAMS): Protocol of a Randomized Controlled Study. Trials 2020, 21 (1), 3. https://doi.org/10.1186/s13063-019-3928-9.

(638) Driessen, C.; Hirv, K.; Kirchner, H.; Rink, L. Zinc Regulates Cytokine Induction by Superantigens and Lipopolysaccharide. Immunology 1995, 84 (2), 272–277.

(639) Maret, W.; Sandstead, H. H. Zinc Requirements and the Risks and Benefits of Zinc Supplementation. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. GMS 2006, 20 (1), 3–18. https://doi.org/10.1016/j.jtemb.2006.01.006.

(640) Kitabayashi, C.; Fukada, T.; Kanamoto, M.; Ohashi, W.; Hojyo, S.; Atsumi, T.; Ueda, N.; Azuma, I.; Hirota, H.; Murakami, M.; Hirano, T. Zinc Suppresses Th17 Development via Inhibition of STAT3 Activation. Int. Immunol. 2010, 22 (5), 375–386. https://doi.org/10.1093/intimm/dxq017.

(641) Maares, M.; Haase, H. Zinc and Immunity: An Essential Interrelation. Arch. Biochem. Biophys. 2016, 611, 58–65. https://doi.org/10.1016/j.abb.2016.03.022.

(642) Rosenkranz, E.; Hilgers, R.-D.; Uciechowski, P.; Petersen, A.; Plümäkers, B.; Rink, L. Zinc Enhances the Number of Regulatory T Cells in Allergen-Stimulated Cells from Atopic Subjects. Eur. J. Nutr. 2017, 56 (2), 557–567. https://doi.org/10.1007/s00394-015-1100-1.

(643) Eby, G. A.; Davis, D. R.; Halcomb, W. W. Reduction in Duration of Common Colds by Zinc Gluconate Lozenges in a Double-Blind Study. Antimicrob. Agents Chemother. 1984, 25 (1), 20–24. https://doi.org/10.1128/aac.25.1.20.

(644) Macknin, M. L.; Piedmonte, M.; Calendine, C.; Janosky, J.; Wald, E. Zinc Gluconate Lozenges for Treating the Common Cold in Children: A Randomized Controlled Trial. JAMA 1998, 279 (24), 1962–1967. https://doi.org/10.1001/jama.279.24.1962.

(645) Science, M.; Johnstone, J.; Roth, D. E.; Guyatt, G.; Loeb, M. Zinc for the Treatment of the Common Cold: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. CMAJ Can. Med. Assoc. J. J. Assoc. Medicale Can. 2012, 184 (10), E551-561. https://doi.org/10.1503/cmaj.111990.

(646) Singh, M.; Das, R. R. WITHDRAWN: Zinc for the Common Cold. Cochrane Database Syst. Rev. 2015, No. 4, CD001364. https://doi.org/10.1002/14651858.CD001364.pub5.

(647) Jothimani, D.; Kailasam, E.; Danielraj, S.; Nallathambi, B.; Ramachandran, H.; Sekar, P.; Manoharan, S.; Ramani, V.; Narasimhan, G.; Kaliamoorthy, I.; Rela, M. COVID-19: Poor Outcomes in Patients with Zinc Deficiency. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 100, 343–349. https://doi.org/10.1016/j.ijid.2020.09.014.

(648) Wessels, I.; Rolles, B.; Rink, L. The Potential Impact of Zinc Supplementation on COVID-19 Pathogenesis. Front. Immunol. 2020, 11, 1712. https://doi.org/10.3389/fimmu.2020.01712.

(649) Pal, A.; Squitti, R.; Picozza, M.; Pawar, A.; Rongioletti, M.; Dutta, A. K.; Sahoo, S.; Goswami, K.; Sharma, P.; Prasad, R. Zinc and COVID-19: Basis of Current Clinical Trials. Biol. Trace Elem. Res. 2021, 199 (8), 2882–2892. https://doi.org/10.1007/s12011-020-02437-9.

(650) Faber, C.; Gabriel, P.; Ibs, K.-H.; Rink, L. Zinc in Pharmacological Doses Suppresses Allogeneic Reaction without Affecting the Antigenic Response. Bone Marrow Transplant. 2004, 33 (12), 1241–1246. https://doi.org/10.1038/sj.bmt.1704509.

(651) Beck, M. A.; Nelson, H. K.; Shi, Q.; Van Dael, P.; Schiffrin, E. J.; Blum, S.; Barclay, D.; Levander, O. A. Selenium Deficiency Increases the Pathology of an Influenza Virus Infection. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2001, 15 (8), 1481–1483.

(652) Nelson, H. K.; Shi, Q.; Van Dael, P.; Schiffrin, E. J.; Blum, S.; Barclay, D.; Levander, O. A.; Beck, M. A. Host Nutritional Selenium Status as a Driving Force for Influenza Virus Mutations. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2001, 15 (10), 1846–1848.

(653) Broome, C. S.; McArdle, F.; Kyle, J. A. M.; Andrews, F.; Lowe, N. M.; Hart, C. A.; Arthur, J. R.; Jackson, M. J. An Increase in Selenium Intake Improves Immune Function and Poliovirus Handling in Adults with Marginal Selenium Status. Am. J. Clin. Nutr. 2004, 80 (1), 154–162. https://doi.org/10.1093/ajcn/80.1.154.

(654) Guillin, O. M.; Vindry, C.; Ohlmann, T.; Chavatte, L. Selenium, Selenoproteins and Viral Infection. Nutrients 2019, 11 (9). https://doi.org/10.3390/nu11092101.

(655) Saleh, J.; Peyssonnaux, C.; Singh, K. K.; Edeas, M. Mitochondria and Microbiota Dysfunction in COVID-19 Pathogenesis. Mitochondrion 2020, 54, 1–7. https://doi.org/10.1016/j.mito.2020.06.008.

(656) Moghaddam, A.; Heller, R. A.; Sun, Q.; Seelig, J.; Cherkezov, A.; Seibert, L.; Hackler, J.; Seemann, P.; Diegmann, J.; Pilz, M.; Bachmann, M.; Minich, W. B.; Schomburg, L. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients 2020, 12 (7). https://doi.org/10.3390/nu12072098.

(657) Sahebari, M.; Rezaieyazdi, Z.; Khodashahi, M. Selenium and Autoimmune Diseases: A Review Article. Curr. Rheumatol. Rev. 2019, 15 (2), 123–134. https://doi.org/10.2174/1573397114666181016112342.

(658) Chandra, R. K. Nutrition and the Immune System from Birth to Old Age. Eur. J. Clin. Nutr. 2002, 56 Suppl 3, S73-76. https://doi.org/10.1038/sj.ejcn.1601492.

(659) Taneri, P. E.; Gómez-Ochoa, S. A.; Llanaj, E.; Raguindin, P. F.; Rojas, L. Z.; Roa-Díaz, Z. M.; Salvador, D.; Groothof, D.; Minder, B.; Kopp-Heim, D.; Hautz, W. E.; Eisenga, M. F.; Franco, O. H.; Glisic, M.; Muka, T. Anemia and Iron Metabolism in COVID-19: A Systematic Review and Meta-Analysis. Eur. J. Epidemiol. 2020, 35 (8), 763–773. https://doi.org/10.1007/s10654-020-00678-5.

(660) Zhao, K.; Huang, J.; Dai, D.; Feng, Y.; Liu, L.; Nie, S. Serum Iron Level as a Potential Predictor of Coronavirus Disease 2019 Severity and Mortality: A Retrospective Study. Open Forum Infect. Dis. 2020, 7 (7), ofaa250. https://doi.org/10.1093/ofid/ofaa250.

(661) Collins, H. L. The Role of Iron in Infections with Intracellular Bacteria. Immunol. Lett. 2003, 85 (2), 193–195. https://doi.org/10.1016/s0165-2478(02)00229-8.

(662) Khan, F. A.; Fisher, M. A.; Khakoo, R. A. Association of Hemochromatosis with Infectious Diseases: Expanding Spectrum. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2007, 11 (6), 482–487. https://doi.org/10.1016/j.ijid.2007.04.007.

(663) Drakesmith, H.; Prentice, A. M. Hepcidin and the Iron-Infection Axis. Science 2012, 338 (6108), 768–772. https://doi.org/10.1126/science.1224577.

(664) Fux, C. A.; Costerton, J. W.; Stewart, P. S.; Stoodley, P. Survival Strategies of Infectious Biofilms. Trends Microbiol. 2005, 13 (1), 34–40. https://doi.org/10.1016/j.tim.2004.11.010.

(665) Johnson, M.; Cockayne, A.; Williams, P. H.; Morrissey, J. A. Iron-Responsive Regulation of Biofilm Formation in Staphylococcus Aureus Involves Fur-Dependent and Fur-Independent Mechanisms. J. Bacteriol. 2005, 187 (23), 8211–8215. https://doi.org/10.1128/JB.187.23.8211-8215.2005.

(666) Cassat, J. E.; Skaar, E. P. Iron in Infection and Immunity. Cell Host Microbe 2013, 13 (5), 509–519. https://doi.org/10.1016/j.chom.2013.04.010.

(667) Dauros-Singorenko, P.; Swift, S. The Transition from Iron Starvation to Iron Sufficiency as an Important Step in the Progression of Infection. Sci. Prog. 2014, 97 (Pt 4), 371–382. https://doi.org/10.3184/003685014X14151846374739.

(668) Goldberg, M. F.; Goldberg, M. F.; Cerejo, R.; Tayal, A. H. Cerebrovascular Disease in COVID-19. Am. J. Neuroradiol. 2020. https://doi.org/10.3174/ajnr.A6588.

(669) Merad, M.; Martin, J. C. Pathological Inflammation in Patients with COVID-19: A Key Role for Monocytes and Macrophages. Nat. Rev. Immunol. 2020, 20 (6), 355–362. https://doi.org/10.1038/s41577-020-0331-4.

(670) Colafrancesco, S.; Alessandri, C.; Conti, F.; Priori, R. COVID-19 Gone Bad: A New Character in the Spectrum of the Hyperferritinemic Syndrome? Autoimmun. Rev. 2020, 19 (7), 102573. https://doi.org/10.1016/j.autrev.2020.102573.

(671) Oppenheimer, S. J. Iron and Its Relation to Immunity and Infectious Disease. J. Nutr. 2001, 131 (2S-2), 616S-633S; discussion 633S-635S. https://doi.org/10.1093/jn/131.2.616S.

(672) Ekiz, C.; Agaoglu, L.; Karakas, Z.; Gurel, N.; Yalcin, I. The Effect of Iron Deficiency Anemia on the Function of the Immune System. Hematol. J. Off. J. Eur. Haematol. Assoc. 2005, 5 (7), 579–583. https://doi.org/10.1038/sj.thj.6200574.

(673) Legrand, D.; Elass, E.; Carpentier, M.; Mazurier, J. Lactoferrin: A Modulator of Immune and Inflammatory Responses. Cell. Mol. Life Sci. CMLS 2005, 62 (22), 2549–2559. https://doi.org/10.1007/s00018-005-5370-2.

(674) Siqueiros-Cendón, T.; Arévalo-Gallegos, S.; Iglesias-Figueroa, B. F.; García-Montoya, I. A.; Salazar-Martínez, J.; Rascón-Cruz, Q. Immunomodulatory Effects of Lactoferrin. Acta Pharmacol. Sin. 2014, 35 (5), 557–566. https://doi.org/10.1038/aps.2013.200.

(675) Legrand, D. Overview of Lactoferrin as a Natural Immune Modulator. J. Pediatr. 2016, 173, S10–S15. https://doi.org/10.1016/j.jpeds.2016.02.071.

(676) Perricone, C.; Bartoloni, E.; Bursi, R.; Cafaro, G.; Guidelli, G. M.; Shoenfeld, Y.; Gerli, R. COVID-19 as Part of the Hyperferritinemic Syndromes: The Role of Iron Depletion Therapy. Immunol. Res. 2020, 68 (4), 213–224. https://doi.org/10.1007/s12026-020-09145-5.

(677) Kell, D. B.; Heyden, E. L.; Pretorius, E. The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Front. Immunol. 2020, 11, 1221. https://doi.org/10.3389/fimmu.2020.01221.

(678) Mazur, A.; Maier, J. A. M.; Rock, E.; Gueux, E.; Nowacki, W.; Rayssiguier, Y. Magnesium and the Inflammatory Response: Potential Physiopathological Implications. Arch. Biochem. Biophys. 2007, 458 (1), 48–56. https://doi.org/10.1016/j.abb.2006.03.031.

(679) Dominguez, L. J.; Veronese, N.; Guerrero-Romero, F.; Barbagallo, M. Magnesium in Infectious Diseases in Older People. Nutrients 2021, 13 (1), 180. https://doi.org/10.3390/nu13010180.

(680) Lang, P. O.; Aspinall, R. Vitamin D Status and the Host Resistance to Infections: What It Is Currently (Not) Understood. Clin. Ther. 2017, 39 (5), 930–945. https://doi.org/10.1016/j.clinthera.2017.04.004.

(681) Zdrenghea, M. T.; Makrinioti, H.; Bagacean, C.; Bush, A.; Johnston, S. L.; Stanciu, L. A. Vitamin D Modulation of Innate Immune Responses to Respiratory Viral Infections. Rev. Med. Virol. 2017, 27 (1). https://doi.org/10.1002/rmv.1909.

(682) Martens, P.-J.; Gysemans, C.; Verstuyf, A.; Mathieu, C. Vitamin D’s Effect on Immune Function. Nutrients 2020, 12 (5), 1248. https://doi.org/10.3390/nu12051248.

(683) Chirumbolo, S.; Bjørklund, G.; Sboarina, A.; Vella, A. The Role of Vitamin D in the Immune System as a Pro-Survival Molecule. Clin. Ther. 2017, 39 (5), 894–916. https://doi.org/10.1016/j.clinthera.2017.03.021.

(684) de Haan, K.; Groeneveld, A. B. J.; de Geus, H. R. H.; Egal, M.; Struijs, A. Vitamin D Deficiency as a Risk Factor for Infection, Sepsis and Mortality in the Critically Ill: Systematic Review and Meta-Analysis. Crit. Care Lond. Engl. 2014, 18 (6), 660. https://doi.org/10.1186/s13054-014-0660-4.

(685) Science, M.; Maguire, J. L.; Russell, M. L.; Smieja, M.; Walter, S. D.; Loeb, M. Serum 25-Hydroxyvitamin D Level and Influenza Vaccine Immunogenicity in Children and Adolescents. PLoS ONE 2014, 9 (1). https://doi.org/10.1371/journal.pone.0083553.

(686) Martineau, A. R.; Jolliffe, D. A.; Hooper, R. L.; Greenberg, L.; Aloia, J. F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A. A.; Goodall, E. C.; Grant, C. C.; Griffiths, C. J.; Janssens, W.; Laaksi, I.; Manaseki-Holland, S.; Mauger, D.; Murdoch, D. R.; Neale, R.; Rees, J. R.; Simpson, S.; Stelmach, I.; Kumar, G. T.; Urashima, M.; Camargo, C. A. Vitamin D Supplementation to Prevent Acute Respiratory Tract Infections: Systematic Review and Meta-Analysis of Individual Participant Data. BMJ 2017, 356, i6583. https://doi.org/10.1136/bmj.i6583.

(687) D’Avolio, A.; Avataneo, V.; Manca, A.; Cusato, J.; De Nicolò, A.; Lucchini, R.; Keller, F.; Cantù, M. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients 2020, 12 (5). https://doi.org/10.3390/nu12051359.

(688) Hernández, J. L.; Nan, D.; Fernandez-Ayala, M.; García-Unzueta, M.; Hernández-Hernández, M. A.; López-Hoyos, M.; Cacho, P. M.; Olmos, J. M.; Gutiérrez-Cuadra, M.; Ruiz-Cubillán, J. J.; Crespo, J.; Martínez-Taboada, V. M. Vitamin D Status in Hospitalized Patients With SARS-CoV-2 Infection. J. Clin. Endocrinol. Metab. https://doi.org/10.1210/clinem/dgaa733.

(689) McCartney, D. M.; Byrne, D. G. Optimisation of Vitamin D Status for Enhanced Immuno-Protection Against Covid-19. Ir. Med. J. 2020, 113 (4), 58.

(690) Pereira, M.; Dantas Damascena, A.; Galvão Azevedo, L. M.; de Almeida Oliveira, T.; da Mota Santana, J. Vitamin D Deficiency Aggravates COVID-19: Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2020, 1–9. https://doi.org/10.1080/10408398.2020.1841090.

(691) Annweiler, G.; Corvaisier, M.; Gautier, J.; Dubée, V.; Legrand, E.; Sacco, G.; Annweiler, C. Vitamin D Supplementation Associated to Better Survival in Hospitalized Frail Elderly COVID-19 Patients: The GERIA-COVID Quasi-Experimental Study. Nutrients 2020, 12 (11). https://doi.org/10.3390/nu12113377.

(692) Annweiler, C.; Souberbielle, J.-C. [Vitamin D supplementation and COVID-19: expert consensus and guidelines]. Geriatr. Psychol. Neuropsychiatr. Vieil. 2021, 19 (1), 20–29. https://doi.org/10.1684/pnv.2020.0907.

(693) Griffin, G.; Hewison, M.; Hopkin, J.; Kenny, R.; Quinton, R.; Rhodes, J.; Subramanian, S.; Thickett, D. Vitamin D and COVID-19: Evidence and Recommendations for Supplementation. R. Soc. Open Sci. 2020, 7 (12), 201912. https://doi.org/10.1098/rsos.201912.

(694) Duan, S.; Lv, Z.; Fan, X.; Wang, L.; Han, F.; Wang, H.; Bi, S. Vitamin D Status and the Risk of Multiple Sclerosis: A Systematic Review and Meta-Analysis. Neurosci. Lett. 2014, 570, 108–113. https://doi.org/10.1016/j.neulet.2014.04.021.

(695) Del Pinto, R.; Pietropaoli, D.; Chandar, A. K.; Ferri, C.; Cominelli, F. Association Between Inflammatory Bowel Disease and Vitamin D Deficiency: A Systematic Review and Meta-Analysis. Inflamm. Bowel Dis. 2015, 21 (11), 2708–2717. https://doi.org/10.1097/MIB.0000000000000546.

(696) Dankers, W.; Colin, E. M.; van Hamburg, J. P.; Lubberts, E. Vitamin D in Autoimmunity: Molecular Mechanisms and Therapeutic Potential. Front. Immunol. 2016, 7, 697. https://doi.org/10.3389/fimmu.2016.00697.

(697) Lin, J.; Liu, J.; Davies, M. L.; Chen, W. Serum Vitamin D Level and Rheumatoid Arthritis Disease Activity: Review and Meta-Analysis. PLOS ONE 2016, 11 (1), e0146351. https://doi.org/10.1371/journal.pone.0146351.

(698) Infante, M.; Ricordi, C.; Sanchez, J.; Clare-Salzler, M. J.; Padilla, N.; Fuenmayor, V.; Chavez, C.; Alvarez, A.; Baidal, D.; Alejandro, R.; Caprio, M.; Fabbri, A. Influence of Vitamin D on Islet Autoimmunity and Beta-Cell Function in Type 1 Diabetes. Nutrients 2019, 11 (9). https://doi.org/10.3390/nu11092185.

(699) Islam, M. A.; Khandker, S. S.; Alam, S. S.; Kotyla, P.; Hassan, R. Vitamin D Status in Patients with Systemic Lupus Erythematosus (SLE): A Systematic Review and Meta-Analysis. Autoimmun. Rev. 2019, 18 (11), 102392. https://doi.org/10.1016/j.autrev.2019.102392.

(700) Leibovitz, B.; Siegel, B. V. Ascorbic Acid and the Immune Response. Adv. Exp. Med. Biol. 1981, 135, 1–25. https://doi.org/10.1007/978-1-4615-9200-6_1.

(701) Hemilä, H. Vitamin C and Infections. Nutrients 2017, 9 (4). https://doi.org/10.3390/nu9040339.

(702) Anderson, R.; Smit, M. J.; Joone, G. K.; Van Staden, A. M. Vitamin C and Cellular Immune Functions. Protection against Hypochlorous Acid-Mediated Inactivation of Glyceraldehyde-3-Phosphate Dehydrogenase and ATP Generation in Human Leukocytes as a Possible Mechanism of Ascorbate-Mediated Immunostimulation. Ann. N. Y. Acad. Sci. 1990, 587, 34–48. https://doi.org/10.1111/j.1749-6632.1990.tb00131.x.

(703) Hemilä, H.; Douglas, R. M. Vitamin C and Acute Respiratory Infections. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Tuberc. Lung Dis. 1999, 3 (9), 756–761.

(704) Hemilä, H.; Chalker, E. Vitamin C for Preventing and Treating the Common Cold. Cochrane Database Syst. Rev. 2013, No. 1, CD000980. https://doi.org/10.1002/14651858.CD000980.pub4.

(705) Hemilä, H.; Chalker, E. Vitamin C May Reduce the Duration of Mechanical Ventilation in Critically Ill Patients: A Meta-Regression Analysis. J. Intensive Care 2020, 8, 15. https://doi.org/10.1186/s40560-020-0432-y.

(706) Colunga Biancatelli, R. M. L.; Berrill, M.; Marik, P. E. The Antiviral Properties of Vitamin C. Expert Rev. Anti Infect. Ther. 2020, 18 (2), 99–101. https://doi.org/10.1080/14787210.2020.1706483.

(707) Carr, A. C.; Rowe, S. The Emerging Role of Vitamin C in the Prevention and Treatment of COVID-19. Nutrients 2020, 12 (11). https://doi.org/10.3390/nu12113286.

(708) Feyaerts, A. F.; Luyten, W. Vitamin C as Prophylaxis and Adjunctive Medical Treatment for COVID-19? Nutr. Burbank Los Angel. Cty. Calif 2020, 79–80, 110948. https://doi.org/10.1016/j.nut.2020.110948.

(709) Cerullo, G.; Negro, M.; Parimbelli, M.; Pecoraro, M.; Perna, S.; Liguori, G.; Rondanelli, M.; Cena, H.; D’Antona, G. The Long History of Vitamin C: From Prevention of the Common Cold to Potential Aid in the Treatment of COVID-19. Front. Immunol. 2020, 11, 574029. https://doi.org/10.3389/fimmu.2020.574029.

(710) Raverdeau, M.; Mills, K. H. G. Modulation of T Cell and Innate Immune Responses by Retinoic Acid. J. Immunol. Baltim. Md 1950 2014, 192 (7), 2953–2958. https://doi.org/10.4049/jimmunol.1303245.

(711) Huang, Z.; Liu, Y.; Qi, G.; Brand, D.; Zheng, S. G. Role of Vitamin A in the Immune System. J. Clin. Med. 2018, 7 (9). https://doi.org/10.3390/jcm7090258.

(712) Semba, R. D. The Role of Vitamin A and Related Retinoids in Immune Function. Nutr. Rev. 1998, 56 (1 Pt 2), S38-48. https://doi.org/10.1111/j.1753-4887.1998.tb01643.x.

(713) Tepasse, P.-R.; Vollenberg, R.; Fobker, M.; Kabar, I.; Schmidt, H.; Meier, J. A.; Nowacki, T.; Hüsing-Kabar, A. Vitamin A Plasma Levels in COVID-19 Patients: A Prospective Multicenter Study and Hypothesis. Nutrients 2021, 13 (7), 2173. https://doi.org/10.3390/nu13072173.

(714) Pandya, V. B.; Kumar, S.; Sachchidanand,  null; Sharma, R.; Desai, R. C. Combating Autoimmune Diseases With Retinoic Acid Receptor-Related Orphan Receptor-γ (RORγ or RORc) Inhibitors: Hits and Misses. J. Med. Chem. 2018, 61 (24), 10976–10995. https://doi.org/10.1021/acs.jmedchem.8b00588.

(715) Curi, R.; Newsholme, P.; Newsholme, E. A. Intracellular Distribution of Some Enzymes of the Glutamine Utilisation Pathway in Rat Lymphocytes. Biochem. Biophys. Res. Commun. 1986, 138 (1), 318–322. https://doi.org/10.1016/0006-291x(86)90282-2.

(716) Newsholme, E. A.; Newsholme, P.; Curi, R. The Role of the Citric Acid Cycle in Cells of the Immune System and Its Importance in Sepsis, Trauma and Burns. Biochem. Soc. Symp. 1987, 54, 145–162.

(717) Dröge, W.; Breitkreutz, R. Glutathione and Immune Function. Proc. Nutr. Soc. 2000, 59 (4), 595–600. https://doi.org/10.1017/s0029665100000847.

(718) Ghezzi, P. Role of Glutathione in Immunity and Inflammation in the Lung. Int. J. Gen. Med. 2011, 4, 105–113. https://doi.org/10.2147/IJGM.S15618.

(719) De Flora, S.; Balansky, R.; La Maestra, S. Rationale for the Use of N-Acetylcysteine in Both Prevention and Adjuvant Therapy of COVID-19. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2020, 34 (10), 13185–13193. https://doi.org/10.1096/fj.202001807.

(720) Shi, Z.; Puyo, C. A. N-Acetylcysteine to Combat COVID-19: An Evidence Review. Ther. Clin. Risk Manag. 2020, 16, 1047–1055. https://doi.org/10.2147/TCRM.S273700.

(721) Tan, D.-X.; Reiter, R. J. Mitochondria: The Birth Place, Battle Ground and the Site of Melatonin Metabolism in Cells. Melatonin Res. 2019, 2 (1), 44–66. https://doi.org/10.32794/mr11250011.

(722) Zhang, R.; Wang, X.; Ni, L.; Di, X.; Ma, B.; Niu, S.; Liu, C.; Reiter, R. J. COVID-19: Melatonin as a Potential Adjuvant Treatment. Life Sci. 2020, 250, 117583. https://doi.org/10.1016/j.lfs.2020.117583.

(723) Reiter, R. J.; Sharma, R.; Ma, Q.; Liu, C.; Manucha, W.; Abreu-Gonzalez, P.; Dominguez-Rodriguez, A. Plasticity of Glucose Metabolism in Activated Immune Cells: Advantages for Melatonin Inhibition of COVID-19 Disease. Melatonin Res. 2020, 3 (3), 362–379. https://doi.org/10.32794/mr11250068.

(724) Martín Giménez, V. M.; Inserra, F.; Tajer, C. D.; Mariani, J.; Ferder, L.; Reiter, R. J.; Manucha, W. Lungs as Target of COVID-19 Infection: Protective Common Molecular Mechanisms of Vitamin D and Melatonin as a New Potential Synergistic Treatment. Life Sci. 2020, 254, 117808. https://doi.org/10.1016/j.lfs.2020.117808.

(725) Corsini, E.; Sokooti, M.; Galli, C. L.; Moretto, A.; Colosio, C. Pesticide Induced Immunotoxicity in Humans: A Comprehensive Review of the Existing Evidence. Toxicology 2013, 307, 123–135. https://doi.org/10.1016/j.tox.2012.10.009.

(726) Lee, G.-H.; Choi, K.-C. Adverse Effects of Pesticides on the Functions of Immune System. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2020, 235, 108789. https://doi.org/10.1016/j.cbpc.2020.108789.

(727) Cao, J.; Xu, X.; Hylkema, M. N.; Zeng, E. Y.; Sly, P. D.; Suk, W. A.; Bergman, Å.; Huo, X. Early-Life Exposure to Widespread Environmental Toxicants and Health Risk: A Focus on the Immune and Respiratory Systems. Ann. Glob. Health 2016, 82 (1), 119–131. https://doi.org/10.1016/j.aogh.2016.01.023.

(728) Parks, C. G.; Santos, A. de S. E.; Lerro, C. C.; DellaValle, C. T.; Ward, M. H.; Alavanja, M. C.; Berndt, S. I.; Beane Freeman, L. E.; Sandler, D. P.; Hofmann, J. N. Lifetime Pesticide Use and Antinuclear Antibodies in Male Farmers From the Agricultural Health Study. Front. Immunol. 2019, 10, 1476. https://doi.org/10.3389/fimmu.2019.01476.

(729) Kuroda, Y.; Akaogi, J.; Nacionales, D. C.; Wasdo, S. C.; Szabo, N. J.; Reeves, W. H.; Satoh, M. Distinctive Patterns of Autoimmune Response Induced by Different Types of Mineral Oil. Toxicol. Sci. Off. J. Soc. Toxicol. 2004, 78 (2), 222–228. https://doi.org/10.1093/toxsci/kfh063.

(730) Belbasis, L.; Bellou, V.; Evangelou, E.; Ioannidis, J. P. A.; Tzoulaki, I. Environmental Risk Factors and Multiple Sclerosis: An Umbrella Review of Systematic Reviews and Meta-Analyses. Lancet Neurol. 2015, 14 (3), 263–273. https://doi.org/10.1016/S1474-4422(14)70267-4.

(731) Pollard, K. M. Silica, Silicosis, and Autoimmunity. Front. Immunol. 2016, 7, 97. https://doi.org/10.3389/fimmu.2016.00097.

(732) Watad, A.; David, P.; Brown, S.; Shoenfeld, Y. Autoimmune/Inflammatory Syndrome Induced by Adjuvants and Thyroid Autoimmunity. Front. Endocrinol. 2017, 7. https://doi.org/10.3389/fendo.2016.00150.

(733) Starek-Świechowicz, B.; Budziszewska, B.; Starek, A. Hexachlorobenzene as a Persistent Organic Pollutant: Toxicity and Molecular Mechanism of Action. Pharmacol. Rep. PR 2017, 69 (6), 1232–1239. https://doi.org/10.1016/j.pharep.2017.06.013.

(734) Arnson, Y.; Shoenfeld, Y.; Amital, H. Effects of Tobacco Smoke on Immunity, Inflammation and Autoimmunity. J. Autoimmun. 2010, 34 (3), J258-265. https://doi.org/10.1016/j.jaut.2009.12.003.

(735) Perricone, C.; Versini, M.; Ben-Ami, D.; Gertel, S.; Watad, A.; Segel, M. J.; Ceccarelli, F.; Conti, F.; Cantarini, L.; Bogdanos, D. P.; Antonelli, A.; Amital, H.; Valesini, G.; Shoenfeld, Y. Smoke and Autoimmunity: The Fire behind the Disease. Autoimmun. Rev. 2016, 15 (4), 354–374. https://doi.org/10.1016/j.autrev.2016.01.001.

(736) Besedovsky, L.; Lange, T.; Haack, M. The Sleep-Immune Crosstalk in Health and Disease. Physiol. Rev. 2019, 99 (3), 1325–1380. https://doi.org/10.1152/physrev.00010.2018.

(737) Haspel, J. A.; Anafi, R.; Brown, M. K.; Cermakian, N.; Depner, C.; Desplats, P.; Gelman, A. E.; Haack, M.; Jelic, S.; Kim, B. S.; Laposky, A. D.; Lee, Y. C.; Mongodin, E.; Prather, A. A.; Prendergast, B. J.; Reardon, C.; Shaw, A. C.; Sengupta, S.; Szentirmai, É.; Thakkar, M.; Walker, W. E.; Solt, L. A. Perfect Timing: Circadian Rhythms, Sleep, and Immunity — an NIH Workshop Summary. JCI Insight 5 (1), e131487. https://doi.org/10.1172/jci.insight.131487.

(738) Ibarra-Coronado, E. G.; Pantaleón-Martínez, A. M.; Velazquéz-Moctezuma, J.; Prospéro-García, O.; Méndez-Díaz, M.; Pérez-Tapia, M.; Pavón, L.; Morales-Montor, J. The Bidirectional Relationship between Sleep and Immunity against Infections. J. Immunol. Res. 2015, 2015, 678164. https://doi.org/10.1155/2015/678164.

(739) Schmidt, M. H. The Energy Allocation Function of Sleep: A Unifying Theory of Sleep, Torpor, and Continuous Wakefulness. Neurosci. Biobehav. Rev. 2014, 47, 122–153. https://doi.org/10.1016/j.neubiorev.2014.08.001.

(740) Prather, A. A.; Leung, C. W. Association of Insufficient Sleep With Respiratory Infection Among Adults in the United States. JAMA Intern. Med. 2016, 176 (6), 850–852. https://doi.org/10.1001/jamainternmed.2016.0787.

(741) Jahrami, H.; BaHammam, A. S.; Bragazzi, N. L.; Saif, Z.; Faris, M.; Vitiello, M. V. Sleep Problems during the COVID-19 Pandemic by Population: A Systematic Review and Meta-Analysis. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2021, 17 (2), 299–313. https://doi.org/10.5664/jcsm.8930.

(742) Campbell, J. P.; Turner, J. E. Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Front. Immunol. 2018, 9, 648. https://doi.org/10.3389/fimmu.2018.00648.

(743) Sharif, K.; Watad, A.; Bragazzi, N. L.; Lichtbroun, M.; Amital, H.; Shoenfeld, Y. Physical Activity and Autoimmune Diseases: Get Moving and Manage the Disease. Autoimmun. Rev. 2018, 17 (1), 53–72. https://doi.org/10.1016/j.autrev.2017.11.010.

(744) Nieman, D. C.; Wentz, L. M. The Compelling Link between Physical Activity and the Body’s Defense System. J. Sport Health Sci. 2019, 8 (3), 201–217. https://doi.org/10.1016/j.jshs.2018.09.009.

(745) Luan, X.; Tian, X.; Zhang, H.; Huang, R.; Li, N.; Chen, P.; Wang, R. Exercise as a Prescription for Patients with Various Diseases. J. Sport Health Sci. 2019, 8 (5), 422–441. https://doi.org/10.1016/j.jshs.2019.04.002.

(746) Grande, A. J.; Keogh, J.; Silva, V.; Scott, A. M. Exercise versus No Exercise for the Occurrence, Severity, and Duration of Acute Respiratory Infections. Cochrane Database Syst. Rev. 2020, 4, CD010596. https://doi.org/10.1002/14651858.CD010596.pub3.

(747) Woods, J. A.; Hutchinson, N. T.; Powers, S. K.; Roberts, W. O.; Gomez-Cabrera, M. C.; Radak, Z.; Berkes, I.; Boros, A.; Boldogh, I.; Leeuwenburgh, C.; Coelho-Júnior, H. J.; Marzetti, E.; Cheng, Y.; Liu, J.; Durstine, J. L.; Sun, J.; Ji, L. L. The COVID-19 Pandemic and Physical Activity. Sports Med. Health Sci. 2020, 2 (2), 55–64. https://doi.org/10.1016/j.smhs.2020.05.006.

(748) Després, J.-P. Severe COVID-19 Outcomes – the Role of Physical Activity. Nat. Rev. Endocrinol. 2021, 17 (8), 451–452. https://doi.org/10.1038/s41574-021-00521-1.

(749) Spence, L.; Brown, W. J.; Pyne, D. B.; Nissen, M. D.; Sloots, T. P.; McCormack, J. G.; Locke, A. S.; Fricker, P. A. Incidence, Etiology, and Symptomatology of Upper Respiratory Illness in Elite Athletes. Med. Sci. Sports Exerc. 2007, 39 (4), 577–586. https://doi.org/10.1249/mss.0b013e31802e851a.

(750) Kilpeläinen, M.; Koskenvuo, M.; Helenius, H.; Terho, E. O. Stressful Life Events Promote the Manifestation of Asthma and Atopic Diseases. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2002, 32 (2), 256–263.

(751) Pedersen, A.; Zachariae, R.; Bovbjerg, D. H. Influence of Psychological Stress on Upper Respiratory Infection–a Meta-Analysis of Prospective Studies. Psychosom. Med. 2010, 72 (8), 823–832. https://doi.org/10.1097/PSY.0b013e3181f1d003.

(752) Stover, C. M. Mechanisms of Stress-Mediated Modulation of Upper and Lower Respiratory Tract Infections. Adv. Exp. Med. Biol. 2016, 874, 215–223. https://doi.org/10.1007/978-3-319-20215-0_10.

(753) Stojanovich, L.; Marisavljevich, D. Stress as a Trigger of Autoimmune Disease. Autoimmun. Rev. 2008, 7 (3), 209–213. https://doi.org/10.1016/j.autrev.2007.11.007.

(754) Song, H.; Fang, F.; Tomasson, G.; Arnberg, F. K.; Mataix-Cols, D.; Fernández de la Cruz, L.; Almqvist, C.; Fall, K.; Valdimarsdóttir, U. A. Association of Stress-Related Disorders With Subsequent Autoimmune Disease. JAMA 2018, 319 (23), 2388–2400. https://doi.org/10.1001/jama.2018.7028.

(755) Cohen, S.; Alper, C. M.; Doyle, W. J.; Treanor, J. J.; Turner, R. B. Positive Emotional Style Predicts Resistance to Illness after Experimental Exposure to Rhinovirus or Influenza a Virus. Psychosom. Med. 2006, 68 (6), 809–815. https://doi.org/10.1097/01.psy.0000245867.92364.3c.

(756) Morgan, N.; Irwin, M. R.; Chung, M.; Wang, C. The Effects of Mind-Body Therapies on the Immune System: Meta-Analysis. PLoS ONE 2014, 9 (7), e100903. https://doi.org/10.1371/journal.pone.0100903.

(757) Black, D. S.; Slavich, G. M. Mindfulness Meditation and the Immune System: A Systematic Review of Randomized Controlled Trials. Ann. N. Y. Acad. Sci. 2016, 1373 (1), 13–24. https://doi.org/10.1111/nyas.12998.

(758) Chandran, V.; Bermúdez, M.-L.; Koka, M.; Chandran, B.; Pawale, D.; Vishnubhotla, R.; Alankar, S.; Maturi, R.; Subramaniam, B.; Sadhasivam, S. Large-Scale Genomic Study Reveals Robust Activation of the Immune System Following Advanced Inner Engineering Meditation Retreat. Proc. Natl. Acad. Sci. 2021, 118 (51). https://doi.org/10.1073/pnas.2110455118.

(759) Lionetti, E.; Pulvirenti, A.; Vallorani, M.; Catassi, G.; Verma, A. K.; Gatti, S.; Catassi, C. Re-Challenge Studies in Non-Celiac Gluten Sensitivity: A Systematic Review and Meta-Analysis. Front. Physiol. 2017, 8, 621. https://doi.org/10.3389/fphys.2017.00621.

(760) Molina-Infante, J.; Carroccio, A. Suspected Nonceliac Gluten Sensitivity Confirmed in Few Patients After Gluten Challenge in Double-Blind, Placebo-Controlled Trials. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2017, 15 (3), 339–348. https://doi.org/10.1016/j.cgh.2016.08.007.

(761) Biesiekierski, J. R.; Newnham, E. D.; Irving, P. M.; Barrett, J. S.; Haines, M.; Doecke, J. D.; Shepherd, S. J.; Muir, J. G.; Gibson, P. R. Gluten Causes Gastrointestinal Symptoms in Subjects without Celiac Disease: A Double-Blind Randomized Placebo-Controlled Trial. Am. J. Gastroenterol. 2011, 106 (3), 508–514; quiz 515. https://doi.org/10.1038/ajg.2010.487.

(762) Aziz, I.; Lewis, N. R.; Hadjivassiliou, M.; Winfield, S. N.; Rugg, N.; Kelsall, A.; Newrick, L.; Sanders, D. S. A UK Study Assessing the Population Prevalence of Self-Reported Gluten Sensitivity and Referral Characteristics to Secondary Care. Eur. J. Gastroenterol. Hepatol. 2014, 26 (1), 33–39. https://doi.org/10.1097/01.meg.0000435546.87251.f7.

(763) Elli, L. and col. Evidence for the Presence of Non-Celiac Gluten Sensitivity in Patients with Functional Gastrointestinal Symptoms: Results from a Multicenter Randomized Double-Blind Placebo-Controlled Gluten Challenge. Nutrients 2016, 8 (2), 84. https://doi.org/10.3390/nu8020084.

(764) Catassi, C.; Elli, L.; Bonaz, B.; Bouma, G.; Carroccio, A.; Castillejo, G.; Cellier, C.; Cristofori, F.; de Magistris, L.; Dolinsek, J.; Dieterich, W.; Francavilla, R.; Hadjivassiliou, M.; Holtmeier, W.; Körner, U.; Leffler, D. A.; Lundin, K. E. A.; Mazzarella, G.; Mulder, C. J.; Pellegrini, N.; Rostami, K.; Sanders, D.; Skodje, G. I.; Schuppan, D.; Ullrich, R.; Volta, U.; Williams, M.; Zevallos, V. F.; Zopf, Y.; Fasano, A. Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts’ Criteria. Nutrients 2015, 7 (6), 4966–4977. https://doi.org/10.3390/nu7064966.

(765) Fasano, A. Zonulin and Its Regulation of Intestinal Barrier Function: The Biological Door to Inflammation, Autoimmunity, and Cancer. Physiol. Rev. 2011, 91 (1), 151–175. https://doi.org/10.1152/physrev.00003.2008.

(766) Zevallos, V. F.; Raker, V.; Tenzer, S.; Jimenez-Calvente, C.; Ashfaq-Khan, M.; Rüssel, N.; Pickert, G.; Schild, H.; Steinbrink, K.; Schuppan, D. Nutritional Wheat Amylase-Trypsin Inhibitors Promote Intestinal Inflammation via Activation of Myeloid Cells. Gastroenterology 2017, 152 (5), 1100-1113.e12. https://doi.org/10.1053/j.gastro.2016.12.006.

(767) Ziegler, K.; Neumann, J.; Liu, F.; Fröhlich-Nowoisky, J.; Cremer, C.; Saloga, J.; Reinmuth-Selzle, K.; Pöschl, U.; Schuppan, D.; Bellinghausen, I.; Lucas, K. Nitration of Wheat Amylase Trypsin Inhibitors Increases Their Innate and Adaptive Immunostimulatory Potential in Vitro. Front. Immunol. 2018, 9, 3174. https://doi.org/10.3389/fimmu.2018.03174.

(768) Geisslitz, S.; Ludwig, C.; Scherf, K. A.; Koehler, P. Targeted LC-MS/MS Reveals Similar Contents of α-Amylase/Trypsin-Inhibitors as Putative Triggers of Nonceliac Gluten Sensitivity in All Wheat Species except Einkorn. J. Agric. Food Chem. 2018, 66 (46), 12395–12403. https://doi.org/10.1021/acs.jafc.8b04411.

(769) Fritscher-Ravens, A.; Pflaum, T.; Mösinger, M.; Ruchay, Z.; Röcken, C.; Milla, P. J.; Das, M.; Böttner, M.; Wedel, T.; Schuppan, D. Many Patients With Irritable Bowel Syndrome Have Atypical Food Allergies Not Associated With Immunoglobulin E. Gastroenterology 2019, 157 (1), 109-118.e5. https://doi.org/10.1053/j.gastro.2019.03.046.

(770) Volta, U.; Pinto-Sanchez, M. I.; Boschetti, E.; Caio, G.; De Giorgio, R.; Verdu, E. F. Dietary Triggers in Irritable Bowel Syndrome: Is There a Role for Gluten? J. Neurogastroenterol. Motil. 2016, 22 (4), 547–557. https://doi.org/10.5056/jnm16069.

(771) Report JMPR – Evaluation Glyphosate 158.

(772) Bøhn, T.; Cuhra, M.; Traavik, T.; Sanden, M.; Fagan, J.; Primicerio, R. Compositional Differences in Soybeans on the Market: Glyphosate Accumulates in Roundup Ready GM Soybeans. Food Chem. 2014, 153, 207–215. https://doi.org/10.1016/j.foodchem.2013.12.054.

(773) Malalgoda, M.; Ohm, J.-B.; Ransom, J. K.; Howatt, K.; Simsek, S. Effects of Pre-Harvest Glyphosate Application on Spring Wheat Quality Characteristics. Agriculture 2020, 10 (4), 111. https://doi.org/10.3390/agriculture10040111.

(774) Mao, Q.; Manservisi, F.; Panzacchi, S.; Mandrioli, D.; Menghetti, I.; Vornoli, A.; Bua, L.; Falcioni, L.; Lesseur, C.; Chen, J.; Belpoggi, F.; Hu, J. The Ramazzini Institute 13-Week Pilot Study on Glyphosate and Roundup Administered at Human-Equivalent Dose to Sprague Dawley Rats: Effects on the Microbiome. Environ. Health Glob. Access Sci. Source 2018, 17 (1), 50. https://doi.org/10.1186/s12940-018-0394-x.

(775) Aitbali, Y.; Ba-M’hamed, S.; Elhidar, N.; Nafis, A.; Soraa, N.; Bennis, M. Glyphosate Based- Herbicide Exposure Affects Gut Microbiota, Anxiety and Depression-like Behaviors in Mice. Neurotoxicol. Teratol. 2018, 67, 44–49. https://doi.org/10.1016/j.ntt.2018.04.002.

(776) Dechartres, J.; Pawluski, J. L.; Gueguen, M.-M.; Jablaoui, A.; Maguin, E.; Rhimi, M.; Charlier, T. D. Glyphosate and Glyphosate-Based Herbicide Exposure during the Peripartum Period Affects Maternal Brain Plasticity, Maternal Behaviour and Microbiome. J. Neuroendocrinol. 2019, 31 (9), e12731. https://doi.org/10.1111/jne.12731.

(777) Tang, Q.; Tang, J.; Ren, X.; Li, C. Glyphosate Exposure Induces Inflammatory Responses in the Small Intestine and Alters Gut Microbial Composition in Rats. Environ. Pollut. Barking Essex 1987 2020, 261, 114129. https://doi.org/10.1016/j.envpol.2020.114129.

(778) Leino, L.; Tall, T.; Helander, M.; Saloniemi, I.; Saikkonen, K.; Ruuskanen, S.; Puigbò, P. Classification of the Glyphosate Target Enzyme (5-Enolpyruvylshikimate-3-Phosphate Synthase) for Assessing Sensitivity of Organisms to the Herbicide. J. Hazard. Mater. 2020, 124556. https://doi.org/10.1016/j.jhazmat.2020.124556.

(779) Zamakhchari, M.; Wei, G.; Dewhirst, F.; Lee, J.; Schuppan, D.; Oppenheim, F. G.; Helmerhorst, E. J. Identification of Rothia Bacteria as Gluten-Degrading Natural Colonizers of the Upper Gastro-Intestinal Tract. PLOS ONE 2011, 6 (9), e24455. https://doi.org/10.1371/journal.pone.0024455.

(780) Samsel, A.; Seneff, S. Glyphosate, Pathways to Modern Diseases II: Celiac Sprue and Gluten Intolerance. Interdiscip. Toxicol. 2013, 6 (4), 159–184. https://doi.org/10.2478/intox-2013-0026.

(781) Barnett, J. A.; Gibson, D. L. Separating the Empirical Wheat From the Pseudoscientific Chaff: A Critical Review of the Literature Surrounding Glyphosate, Dysbiosis and Wheat-Sensitivity. Front. Microbiol. 2020, 11, 556729. https://doi.org/10.3389/fmicb.2020.556729.

(782) Atkinson, W.; Sheldon, T. A.; Shaath, N.; Whorwell, P. J. Food Elimination Based on IgG Antibodies in Irritable Bowel Syndrome: A Randomised Controlled Trial. Gut 2004, 53 (10), 1459–1464. https://doi.org/10.1136/gut.2003.037697.

(783) Schumann, M.; Richter, J. F.; Wedell, I.; Moos, V.; Zimmermann-Kordmann, M.; Schneider, T.; Daum, S.; Zeitz, M.; Fromm, M.; Schulzke, J. D. Mechanisms of Epithelial Translocation of the Alpha(2)-Gliadin-33mer in Coeliac Sprue. Gut 2008, 57 (6), 747–754. https://doi.org/10.1136/gut.2007.136366.

(784) Daulatzai, M. A. Non-Celiac Gluten Sensitivity Triggers Gut Dysbiosis, Neuroinflammation, Gut-Brain Axis Dysfunction, and Vulnerability for Dementia. CNS Neurol. Disord. Drug Targets 2015, 14 (1), 110–131. https://doi.org/10.2174/1871527314666150202152436.

(785) Uhde, M.; Ajamian, M.; Caio, G.; De Giorgio, R.; Indart, A.; Green, P. H.; Verna, E. C.; Volta, U.; Alaedini, A. Intestinal Cell Damage and Systemic Immune Activation in Individuals Reporting Sensitivity to Wheat in the Absence of Coeliac Disease. Gut 2016, 65 (12), 1930–1937. https://doi.org/10.1136/gutjnl-2016-311964.

(786) Leccioli, V.; Oliveri, M.; Romeo, M.; Berretta, M.; Rossi, P. A New Proposal for the Pathogenic Mechanism of Non-Coeliac/Non-Allergic Gluten/Wheat Sensitivity: Piecing Together the Puzzle of Recent Scientific Evidence. Nutrients 2017, 9 (11). https://doi.org/10.3390/nu9111203.

(787) Rao, D. A. T Cells That Help B Cells in Chronically Inflamed Tissues. Front. Immunol. 2018, 9, 1924. https://doi.org/10.3389/fimmu.2018.01924.

(788) Barbaro, M. R.; Cremon, C.; Morselli-Labate, A. M.; Di Sabatino, A.; Giuffrida, P.; Corazza, G. R.; Di Stefano, M.; Caio, G.; Latella, G.; Ciacci, C.; Fuschi, D.; Mastroroberto, M.; Bellacosa, L.; Stanghellini, V.; Volta, U.; Barbara, G. Serum Zonulin and Its Diagnostic Performance in Non-Coeliac Gluten Sensitivity. Gut 2020. https://doi.org/10.1136/gutjnl-2019-319281.

(789) Barker, W. C.; Ketcham, L. K.; Dayhoff, M. O. Origins of Immunoglobulin Heavy Chain Domains. J. Mol. Evol. 1980, 15 (2), 113–127. https://doi.org/10.1007/bf01732665.

(790) Wang, W.; Uzzau, S.; Goldblum, S. E.; Fasano, A. Human Zonulin, a Potential Modulator of Intestinal Tight Junctions. J. Cell Sci. 2000, 113 Pt 24, 4435–4440.

(791) Tripathi, A.; Lammers, K. M.; Goldblum, S.; Shea-Donohue, T.; Netzel-Arnett, S.; Buzza, M. S.; Antalis, T. M.; Vogel, S. N.; Zhao, A.; Yang, S.; Arrietta, M.-C.; Meddings, J. B.; Fasano, A. Identification of Human Zonulin, a Physiological Modulator of Tight Junctions, as Prehaptoglobin-2. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (39), 16799–16804. https://doi.org/10.1073/pnas.0906773106.

(792) Fasano, A. All Disease Begins in the (Leaky) Gut: Role of Zonulin-Mediated Gut Permeability in the Pathogenesis of Some Chronic Inflammatory Diseases. F1000Research 2020, 9, F1000 Faculty Rev-69. https://doi.org/10.12688/f1000research.20510.1.

(793) Makharia, A.; Catassi, C.; Makharia, G. K. The Overlap between Irritable Bowel Syndrome and Non-Celiac Gluten Sensitivity: A Clinical Dilemma. Nutrients 2015, 7 (12), 10417–10426. https://doi.org/10.3390/nu7125541.

(794) Wang, Y.; Harvey, C. B.; Hollox, E. J.; Phillips, A. D.; Poulter, M.; Clay, P.; Walker-Smith, J. A.; Swallow, D. M. The Genetically Programmed Down-Regulation of Lactase in Children. Gastroenterology 1998, 114 (6), 1230–1236. https://doi.org/10.1016/s0016-5085(98)70429-9.

(795) Savaiano, D. A.; Levitt, M. D. Milk Intolerance and Microbe-Containing Dairy Foods. J. Dairy Sci. 1987, 70 (2), 397–406. https://doi.org/10.3168/jds.S0022-0302(87)80023-1.

(796) Ranciaro, A.; Campbell, M. C.; Hirbo, J. B.; Ko, W.-Y.; Froment, A.; Anagnostou, P.; Kotze, M. J.; Ibrahim, M.; Nyambo, T.; Omar, S. A.; Tishkoff, S. A. Genetic Origins of Lactase Persistence and the Spread of Pastoralism in Africa. Am. J. Hum. Genet. 2014, 94 (4), 496–510. https://doi.org/10.1016/j.ajhg.2014.02.009.

(797) Dibba, B.; Prentice, A.; Laskey, M. A.; Stirling, D. M.; Cole, T. J. An Investigation of Ethnic Differences in Bone Mineral, Hip Axis Length, Calcium Metabolism and Bone Turnover between West African and Caucasian Adults Living in the United Kingdom. Ann. Hum. Biol. 1999, 26 (3), 229–242.

(798) Gilat, T.; Russo, S.; Gelman-Malachi, E.; Aldor, T. A. Lactase in Man: A Nonadaptable Enzyme. Gastroenterology 1972, 62 (6), 1125–1127.

(799) Shaw, A. D.; Davies, G. J. Lactose Intolerance: Problems in Diagnosis and Treatment. J. Clin. Gastroenterol. 1999, 28 (3), 208–216. https://doi.org/10.1097/00004836-199904000-00005.

(800) Ojetti, V.; Gigante, G.; Gabrielli, M.; Ainora, M. E.; Mannocci, A.; Lauritano, E. C.; Gasbarrini, G.; Gasbarrini, A. The Effect of Oral Supplementation with Lactobacillus Reuteri or Tilactase in Lactose Intolerant Patients: Randomized Trial. Eur. Rev. Med. Pharmacol. Sci. 2010, 14 (3), 163–170.

(801) Gorbach, S. L. Lactic Acid Bacteria and Human Health. Ann. Med. 1990, 22 (1), 37–41. https://doi.org/10.3109/07853899009147239.

(802) Cieślińska, A.; Kostyra, E.; Kostyra, H.; Oleński, K.; Fiedorowicz, E.; Kamiński, S. Milk from Cows of Different β-Casein Genotypes as a Source of β-Casomorphin-7. Int. J. Food Sci. Nutr. 2012, 63 (4), 426–430. https://doi.org/10.3109/09637486.2011.634785.

(803) Boutrou, R.; Gaudichon, C.; Dupont, D.; Jardin, J.; Airinei, G.; Marsset-Baglieri, A.; Benamouzig, R.; Tomé, D.; Leonil, J. Sequential Release of Milk Protein-Derived Bioactive Peptides in the Jejunum in Healthy Humans. Am. J. Clin. Nutr. 2013, 97 (6), 1314–1323. https://doi.org/10.3945/ajcn.112.055202.

(804) Jarmołowska, B.; Sidor, K.; Iwan, M.; Bielikowicz, K.; Kaczmarski, M.; Kostyra, E.; Kostyra, H. Changes of Beta-Casomorphin Content in Human Milk during Lactation. Peptides 2007, 28 (10), 1982–1986. https://doi.org/10.1016/j.peptides.2007.08.002.

(805) Truswell, A. S. The A2 Milk Case: A Critical Review. Eur. J. Clin. Nutr. 2005, 59 (5), 623–631. https://doi.org/10.1038/sj.ejcn.1602104.

(806) Barnett, M. P. G.; McNabb, W. C.; Roy, N. C.; Woodford, K. B.; Clarke, A. J. Dietary A1 β-Casein Affects Gastrointestinal Transit Time, Dipeptidyl Peptidase-4 Activity, and Inflammatory Status Relative to A2 β-Casein in Wistar Rats. Int. J. Food Sci. Nutr. 2014, 65 (6), 720–727. https://doi.org/10.3109/09637486.2014.898260.

(807) Ul Haq, M. R.; Kapila, R.; Sharma, R.; Saliganti, V.; Kapila, S. Comparative Evaluation of Cow β-Casein Variants (A1/A2) Consumption on Th2-Mediated Inflammatory Response in Mouse Gut. Eur. J. Nutr. 2014, 53 (4), 1039–1049. https://doi.org/10.1007/s00394-013-0606-7.

(808) Brooke-Taylor, S.; Dwyer, K.; Woodford, K.; Kost, N. Systematic Review of the Gastrointestinal Effects of A1 Compared with A2 β-Casein. Adv. Nutr. Bethesda Md 2017, 8 (5), 739–748. https://doi.org/10.3945/an.116.013953.

(809) Iacono, G.; Cavataio, F.; Montalto, G.; Florena, A.; Tumminello, M.; Soresi, M.; Notarbartolo, A.; Carroccio, A. Intolerance of Cow’s Milk and Chronic Constipation in Children. N. Engl. J. Med. 1998, 339 (16), 1100–1104. https://doi.org/10.1056/NEJM199810153391602.

(810) Crowley, E. T.; Williams, L. T.; Roberts, T. K.; Dunstan, R. H.; Jones, P. D. Does Milk Cause Constipation? A Crossover Dietary Trial. Nutrients 2013, 5 (1), 253–266. https://doi.org/10.3390/nu5010253.

(811) Ho, S.; Woodford, K.; Kukuljan, S.; Pal, S. Comparative Effects of A1 versus A2 Beta-Casein on Gastrointestinal Measures: A Blinded Randomised Cross-over Pilot Study. Eur. J. Clin. Nutr. 2014, 68 (9), 994–1000. https://doi.org/10.1038/ejcn.2014.127.

(812) EFSA. Review of the Potential Health Impact of β-Casomorphins and Related Peptides. EFSA J. 2009, 7 (2), 231r. https://doi.org/10.2903/j.efsa.2009.231r.

(813) Trivedi, M. S.; Shah, J. S.; Al-Mughairy, S.; Hodgson, N. W.; Simms, B.; Trooskens, G. A.; Van Criekinge, W.; Deth, R. C. Food-Derived Opioid Peptides Inhibit Cysteine Uptake with Redox and Epigenetic Consequences. J. Nutr. Biochem. 2014, 25 (10), 1011–1018. https://doi.org/10.1016/j.jnutbio.2014.05.004.

(814) Trivedi, M.; Zhang, Y.; Lopez-Toledano, M.; Clarke, A.; Deth, R. Differential Neurogenic Effects of Casein-Derived Opioid Peptides on Neuronal Stem Cells: Implications for Redox-Based Epigenetic Changes. J. Nutr. Biochem. 2016, 37, 39–46. https://doi.org/10.1016/j.jnutbio.2015.10.012.

(815) Jianqin, S.; Leiming, X.; Lu, X.; Yelland, G. W.; Ni, J.; Clarke, A. J. Effects of Milk Containing Only A2 Beta Casein versus Milk Containing Both A1 and A2 Beta Casein Proteins on Gastrointestinal Physiology, Symptoms of Discomfort, and Cognitive Behavior of People with Self-Reported Intolerance to Traditional Cows’ Milk. Nutr. J. 2016, 15 (1), 35. https://doi.org/10.1186/s12937-016-0147-z.

(816) He, M.; Sun, J.; Jiang, Z. Q.; Yang, Y. X. Effects of Cow’s Milk Beta-Casein Variants on Symptoms of Milk Intolerance in Chinese Adults: A Multicentre, Randomised Controlled Study. Nutr. J. 2017, 16 (1), 72. https://doi.org/10.1186/s12937-017-0275-0.

(817) Milan, A. M.; Shrestha, A.; Karlström, H. J.; Martinsson, J. A.; Nilsson, N. J.; Perry, J. K.; Day, L.; Barnett, M. P. G.; Cameron-Smith, D. Comparison of the Impact of Bovine Milk β-Casein Variants on Digestive Comfort in Females Self-Reporting Dairy Intolerance: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2020, 111 (1), 149–160. https://doi.org/10.1093/ajcn/nqz279.

(818) Zhu, Y.; Lin, X.; Zhao, F.; Shi, X.; Li, H.; Li, Y.; Zhu, W.; Xu, X.; Li, C.; Zhou, G. Meat, Dairy and Plant Proteins Alter Bacterial Composition of Rat Gut Bacteria. Sci. Rep. 2015, 5, 15220. https://doi.org/10.1038/srep15220.

(819) Llewellyn, S. R.; Britton, G. J.; Contijoch, E. J.; Vennaro, O. H.; Mortha, A.; Colombel, J.-F.; Grinspan, A.; Clemente, J. C.; Merad, M.; Faith, J. J. Interactions between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice. Gastroenterology 2018, 154 (4), 1037-1046.e2. https://doi.org/10.1053/j.gastro.2017.11.030.

(820) Masarwi, M.; Solnik, H. I.; Phillip, M.; Yaron, S.; Shamir, R.; Pasmanic-Chor, M.; Gat-Yablonski, G. Food Restriction Followed by Refeeding with a Casein- or Whey-Based Diet Differentially Affects the Gut Microbiota of Pre-Pubertal Male Rats. J. Nutr. Biochem. 2018, 51, 27–39. https://doi.org/10.1016/j.jnutbio.2017.08.014.

(821) Guggenmos, J.; Schubart, A. S.; Ogg, S.; Andersson, M.; Olsson, T.; Mather, I. H.; Linington, C. Antibody Cross-Reactivity between Myelin Oligodendrocyte Glycoprotein and the Milk Protein Butyrophilin in Multiple Sclerosis. J. Immunol. Baltim. Md 1950 2004, 172 (1), 661–668. https://doi.org/10.4049/jimmunol.172.1.661.

(822) Aune, D.; Navarro Rosenblatt, D. A.; Chan, D. S. M.; Vieira, A. R.; Vieira, R.; Greenwood, D. C.; Vatten, L. J.; Norat, T. Dairy Products, Calcium, and Prostate Cancer Risk: A Systematic Review and Meta-Analysis of Cohort Studies. Am. J. Clin. Nutr. 2015, 101 (1), 87–117. https://doi.org/10.3945/ajcn.113.067157.

(823) Wang, J.; Li, X.; Zhang, D. Dairy Product Consumption and Risk of Non-Hodgkin Lymphoma: A Meta-Analysis. Nutrients 2016, 8 (3), 120. https://doi.org/10.3390/nu8030120.

(824) Reindl, M.; Waters, P. Myelin Oligodendrocyte Glycoprotein Antibodies in Neurological Disease. Nat. Rev. Neurol. 2019, 15 (2), 89–102. https://doi.org/10.1038/s41582-018-0112-x.

(825) Schilter, B.; Stadler, R. H.; Tritscher, A. Contaminants of Milk and Dairy Products: Contamination Resulting from Farm and Dairy Practices. ResearchGate 2011. https://doi.org/10.1016/B978-0-12-374407-4.00104-7.

(826) Calahorrano-Moreno, M. B.; Ordoñez-Bailon, J. J.; Baquerizo-Crespo, R. J.; Dueñas-Rivadeneira, A. A.; Montenegro, M. C. B. S. M.; Rodríguez-Díaz, J. M. Contaminants in the Cow’s Milk We Consume? Pasteurization and Other Technologies in the Elimination of Contaminants. F1000Research January 25, 2022. https://doi.org/10.12688/f1000research.108779.1.

(827) Năstăsescu, V.; Mititelu, M.; Goumenou, M.; Docea, A. O.; Renieri, E.; Udeanu, D. I.; Oprea, E.; Arsene, A. L.; Dinu-Pîrvu, C. E.; Ghica, M. Heavy Metal and Pesticide Levels in Dairy Products: Evaluation of Human Health Risk. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2020, 146, 111844. https://doi.org/10.1016/j.fct.2020.111844.

(828) Wang, X. P.; Zhao, X. H. Prior Lactose Glycation of Caseinate via the Maillard Reaction Affects in Vitro Activities of the Pepsin-Trypsin Digest toward Intestinal Epithelial Cells. J. Dairy Sci. 2017, 100 (7), 5125–5138. https://doi.org/10.3168/jds.2016-12491.

(829) Shi, J.; Zhao, X.-H. Influence of the Maillard-Type Caseinate Glycation with Lactose on the Intestinal Barrier Activity of the Caseinate Digest in IEC-6 Cells. Food Funct. 2019, 10 (4), 2010–2021. https://doi.org/10.1039/c8fo02607f.

(830) Shi, J.; Zhao, X.-H. Effect of Caseinate Glycation with Oligochitosan and Transglutaminase on the Intestinal Barrier Function of the Tryptic Caseinate Digest in IEC-6 Cells. Food Funct. 2019, 10 (2), 652–664. https://doi.org/10.1039/c8fo01785a.

(831) Rezac, S.; Kok, C. R.; Heermann, M.; Hutkins, R. Fermented Foods as a Dietary Source of Live Organisms. Front. Microbiol. 2018, 9. https://doi.org/10.3389/fmicb.2018.01785.

(832) Gaucher, F.; Bonnassie, S.; Rabah, H.; Marchand, P.; Blanc, P.; Jeantet, R.; Jan, G. Review: Adaptation of Beneficial Propionibacteria, Lactobacilli, and Bifidobacteria Improves Tolerance Toward Technological and Digestive Stresses. Front. Microbiol. 2019, 10. https://doi.org/10.3389/fmicb.2019.00841.

(833) Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T. P.; Ross, R. P.; Fitzgerald, G. F.; Cotter, P. D. The Complex Microbiota of Raw Milk. FEMS Microbiol. Rev. 2013, 37 (5), 664–698. https://doi.org/10.1111/1574-6976.12030.

(834) Coury, D. L.; Ashwood, P.; Fasano, A.; Fuchs, G.; Geraghty, M.; Kaul, A.; Mawe, G.; Patterson, P.; Jones, N. E. Gastrointestinal Conditions in Children with Autism Spectrum Disorder: Developing a Research Agenda. Pediatrics 2012, 130 Suppl 2, S160-168. https://doi.org/10.1542/peds.2012-0900N.

(835) MacFabe, D. Autism: Metabolism, Mitochondria, and the Microbiome. Glob. Adv. Health Med. 2013, 2 (6), 52–66. https://doi.org/10.7453/gahmj.2013.089.

(836) Samsam, M.; Ahangari, R.; Naser, S. A. Pathophysiology of Autism Spectrum Disorders: Revisiting Gastrointestinal Involvement and Immune Imbalance. World J. Gastroenterol. 2014, 20 (29), 9942–9951. https://doi.org/10.3748/wjg.v20.i29.9942.

(837) Fiorentino, M.; Sapone, A.; Senger, S.; Camhi, S. S.; Kadzielski, S. M.; Buie, T. M.; Kelly, D. L.; Cascella, N.; Fasano, A. Blood-Brain Barrier and Intestinal Epithelial Barrier Alterations in Autism Spectrum Disorders. Mol. Autism 2016, 7, 49. https://doi.org/10.1186/s13229-016-0110-z.

(838) Nankova, B. B.; Agarwal, R.; MacFabe, D. F.; La Gamma, E. F. Enteric Bacterial Metabolites Propionic and Butyric Acid Modulate Gene Expression, Including CREB-Dependent Catecholaminergic Neurotransmission, in PC12 Cells–Possible Relevance to Autism Spectrum Disorders. PloS One 2014, 9 (8), e103740. https://doi.org/10.1371/journal.pone.0103740.

(839) Esnafoglu, E.; Cırrık, S.; Ayyıldız, S. N.; Erdil, A.; Ertürk, E. Y.; Daglı, A.; Noyan, T. Increased Serum Zonulin Levels as an Intestinal Permeability Marker in Autistic Subjects. J. Pediatr. 2017, 188, 240–244. https://doi.org/10.1016/j.jpeds.2017.04.004.

(840) Fasano, A.; Hill, I. Serum Zonulin, Gut Permeability, and the Pathogenesis of Autism Spectrum Disorders: Cause, Effect, or an Epiphenomenon? J. Pediatr. 2017, 188, 15–17. https://doi.org/10.1016/j.jpeds.2017.05.038.

(841) Garg, S.; Nurgali, K.; Mishra, V. K. Food Proteins as Source of Opioid Peptides-A Review. Curr. Med. Chem. 2016, 23 (9), 893–910. https://doi.org/10.2174/0929867323666160219115226.

(842) Takahashi, M.; Fukunaga, H.; Kaneto, H.; Fukudome, S.; Yoshikawa, M. Behavioral and Pharmacological Studies on Gluten Exorphin A5, a Newly Isolated Bioactive Food Protein Fragment, in Mice. Jpn. J. Pharmacol. 2000, 84 (3), 259–265. https://doi.org/10.1254/jjp.84.259.

(843) Lister, J.; Fletcher, P. J.; Nobrega, J. N.; Remington, G. Behavioral Effects of Food-Derived Opioid-like Peptides in Rodents: Implications for Schizophrenia? Pharmacol. Biochem. Behav. 2015, 134, 70–78. https://doi.org/10.1016/j.pbb.2015.01.020.

(844) Sokolov, O.; Kost, N.; Andreeva, O.; Korneeva, E.; Meshavkin, V.; Tarakanova, Y.; Dadayan, A.; Zolotarev, Y.; Grachev, S.; Mikheeva, I.; Varlamov, O.; Zozulya, A. Autistic Children Display Elevated Urine Levels of Bovine Casomorphin-7 Immunoreactivity. Peptides 2014, 56, 68–71. https://doi.org/10.1016/j.peptides.2014.03.007.

(845) Cieślińska, A.; Sienkiewicz-Szłapka, E.; Wasilewska, J.; Fiedorowicz, E.; Chwała, B.; Moszyńska-Dumara, M.; Cieśliński, T.; Bukało, M.; Kostyra, E. Influence of Candidate Polymorphisms on the Dipeptidyl Peptidase IV and μ-Opioid Receptor Genes Expression in Aspect of the β-Casomorphin-7 Modulation Functions in Autism. Peptides 2015, 65, 6–11. https://doi.org/10.1016/j.peptides.2014.11.012.

(846) Frenssen, F.; Croonenberghs, J.; Van den Steene, H.; Maes, M. Prolyl Endopeptidase and Dipeptidyl Peptidase IV Are Associated with Externalizing and Aggressive Behaviors in Normal and Autistic Adolescents. Life Sci. 2015, 136, 157–162. https://doi.org/10.1016/j.lfs.2015.07.003.

(847) Bock, O.; Kreiselmeyer, I.; Mrowietz, U. Expression of Dipeptidyl-Peptidase IV (CD26) on CD8+ T Cells Is Significantly Decreased in Patients with Psoriasis Vulgaris and Atopic Dermatitis. Exp. Dermatol. 2001, 10 (6), 414–419. https://doi.org/10.1034/j.1600-0625.2001.100604.x.

(848) Ansorge, S.; Bank, U.; Heimburg, A.; Helmuth, M.; Koch, G.; Tadje, J.; Lendeckel, U.; Wolke, C.; Neubert, K.; Faust, J.; Fuchs, P.; Reinhold, D.; Thielitz, A.; Täger, M. Recent Insights into the Role of Dipeptidyl Aminopeptidase IV (DPIV) and Aminopeptidase N (APN) Families in Immune Functions. Clin. Chem. Lab. Med. 2009, 47 (3), 253–261. https://doi.org/10.1515/CCLM.2009.063.

(849) Matić, I. Z.; Đorđić, M.; Grozdanić, N.; Damjanović, A.; Kolundžija, B.; Erić-Nikolić, A.; Džodić, R.; Šašić, M.; Nikolić, S.; Dobrosavljević, D.; Rašković, S.; Andrejević, S.; Gavrilović, D.; Cordero, O. J.; Juranić, Z. D. Serum Activity of DPPIV and Its Expression on Lymphocytes in Patients with Melanoma and in People with Vitiligo. BMC Immunol. 2012, 13 (1), 48. https://doi.org/10.1186/1471-2172-13-48.

(850) Fiedorowicz, E.; Kaczmarski, M.; Cieślińska, A.; Sienkiewicz-Szłapka, E.; Jarmołowska, B.; Chwała, B.; Kostyra, E. β-Casomorphin-7 Alters μ-Opioid Receptor and Dipeptidyl Peptidase IV Genes Expression in Children with Atopic Dermatitis. Peptides 2014, 62, 144–149. https://doi.org/10.1016/j.peptides.2014.09.020.

(851) Jarmołowska, B.; Bukało, M.; Fiedorowicz, E.; Cieślińska, A.; Kordulewska, N. K.; Moszyńska, M.; Świątecki, A.; Kostyra, E. Role of Milk-Derived Opioid Peptides and Proline Dipeptidyl Peptidase-4 in Autism Spectrum Disorders. Nutrients 2019, 11 (1). https://doi.org/10.3390/nu11010087.

(852) Reichelt, K. L.; Knivsberg, A. M. The Possibility and Probability of a Gut-to-Brain Connection in Autism. Ann. Clin. Psychiatry Off. J. Am. Acad. Clin. Psychiatr. 2009, 21 (4), 205–211.

(853) Severance, E. G.; Gressitt, K.; Halling, M.; Stallings, C. R.; Origoni, A. E.; Vaughan, C.; Khushalani, S.; Alaedini, A.; Dupont, D.; Dickerson, F. B.; Yolken, R. H. Complement C1q Formation of Immune Complexes with Milk Caseins and Wheat Glutens in Schizophrenia. Neurobiol. Dis. 2012, 48 (3), 447–453. https://doi.org/10.1016/j.nbd.2012.07.005.

(854) Whiteley, P.; Shattock, P.; Knivsberg, A.-M.; Seim, A.; Reichelt, K. L.; Todd, L.; Carr, K.; Hooper, M. Gluten- and Casein-Free Dietary Intervention for Autism Spectrum Conditions. Front. Hum. Neurosci. 2013, 6. https://doi.org/10.3389/fnhum.2012.00344.

(855) Pedersen, L.; Parlar, S.; Kvist, K.; Whiteley, P.; Shattock, P. Data Mining the ScanBrit Study of a Gluten- and Casein-Free Dietary Intervention for Children with Autism Spectrum Disorders: Behavioural and Psychometric Measures of Dietary Response. Nutr. Neurosci. 2014, 17 (5), 207–213. https://doi.org/10.1179/1476830513Y.0000000082.

(856) Ergün, C.; Urhan, M.; Ayer, A. A Review on the Relationship between Gluten and Schizophrenia: Is Gluten the Cause? Nutr. Neurosci. 2018, 21 (7), 455–466. https://doi.org/10.1080/1028415X.2017.1313569.

(857) Busby, E.; Bold, J.; Fellows, L.; Rostami, K. Mood Disorders and Gluten: It’s Not All in Your Mind! A Systematic Review with Meta-Analysis. Nutrients 2018, 10 (11). https://doi.org/10.3390/nu10111708.

(858) Edholm, T.; Degerblad, M.; Grybäck, P.; Hilsted, L.; Holst, J. J.; Jacobsson, H.; Efendic, S.; Schmidt, P. T.; Hellström, P. M. Differential Incretin Effects of GIP and GLP-1 on Gastric Emptying, Appetite, and Insulin-Glucose Homeostasis. Neurogastroenterol. Motil. Off. J. Eur. Gastrointest. Motil. Soc. 2010, 22 (11), 1191–1200, e315. https://doi.org/10.1111/j.1365-2982.2010.01554.x.

(859) Tasyurek, H. M.; Altunbas, H. A.; Balci, M. K.; Sanlioglu, S. Incretins: Their Physiology and Application in the Treatment of Diabetes Mellitus. Diabetes Metab. Res. Rev. 2014, 30 (5), 354–371. https://doi.org/10.1002/dmrr.2501.

(860) Jung, T.-H.; Hwang, H.-J.; Yun, S.-S.; Lee, W.-J.; Kim, J.-W.; Ahn, J.-Y.; Jeon, W.-M.; Han, K.-S. Hypoallergenic and Physicochemical Properties of the A2 β-Casein Fractionof Goat Milk. Korean J. Food Sci. Anim. Resour. 2017, 37 (6), 940–947. https://doi.org/10.5851/kosfa.2017.37.6.940.

(861) Jandal, J. M. Comparative Aspects of Goat and Sheep Milk. Small Rumin. Res. 1996, 22 (2), 177–185. https://doi.org/10.1016/S0921-4488(96)00880-2.

(862) Bossios, A.; Theodoropoulou, M.; Mondoulet, L.; Rigby, N. M.; Papadopoulos, N. G.; Bernard, H.; Adel-Patient, K.; Wal, J.-M.; Mills, C. E.; Papageorgiou, P. Effect of Simulated Gastro-Duodenal Digestion on the Allergenic Reactivity of Beta-Lactoglobulin. Clin. Transl. Allergy 2011, 1, 6. https://doi.org/10.1186/2045-7022-1-6.

(863) Ballabio, C.; Chessa, S.; Rignanese, D.; Gigliotti, C.; Pagnacco, G.; Terracciano, L.; Fiocchi, A.; Restani, P.; Caroli, A. M. Goat Milk Allergenicity as a Function of Αs₁-Casein Genetic Polymorphism. J. Dairy Sci. 2011, 94 (2), 998–1004. https://doi.org/10.3168/jds.2010-3545.

(864) Bonanno, A.; Di Grigoli, A.; Di Trana, A.; Di Gregorio, P.; Tornambè, G.; Bellina, V.; Claps, S.; Maggio, G.; Todaro, M. Influence of Fresh Forage-Based Diets and Αs₁-Casein (CSN1S1) Genotype on Nutrient Intake and Productive, Metabolic, and Hormonal Responses in Milking Goats. J. Dairy Sci. 2013, 96 (4), 2107–2117. https://doi.org/10.3168/jds.2012-6244.

(865) da Costa, W. K. A.; de Souza, E. L.; Beltrão-Filho, E. M.; Vasconcelos, G. K. V.; Santi-Gadelha, T.; de Almeida Gadelha, C. A.; Franco, O. L.; Magnani, M. Comparative Protein Composition Analysis of Goat Milk Produced by the Alpine and Saanen Breeds in Northeastern Brazil and Related Antibacterial Activities. PLoS ONE 2014, 9 (3). https://doi.org/10.1371/journal.pone.0093361.

(866) Biagi, E.; Franceschi, C.; Rampelli, S.; Severgnini, M.; Ostan, R.; Turroni, S.; Consolandi, C.; Quercia, S.; Scurti, M.; Monti, D.; Capri, M.; Brigidi, P.; Candela, M. Gut Microbiota and Extreme Longevity. Curr. Biol. CB 2016, 26 (11), 1480–1485. https://doi.org/10.1016/j.cub.2016.04.016.

(867) Biagi, E.; Rampelli, S.; Turroni, S.; Quercia, S.; Candela, M.; Brigidi, P. The Gut Microbiota of Centenarians: Signatures of Longevity in the Gut Microbiota Profile. Mech. Ageing Dev. 2017, 165 (Pt B), 180–184. https://doi.org/10.1016/j.mad.2016.12.013.

(868) Gill, S. R.; Pop, M.; DeBoy, R. T.; Eckburg, P. B.; Turnbaugh, P. J.; Samuel, B. S.; Gordon, J. I.; Relman, D. A.; Fraser-Liggett, C. M.; Nelson, K. E. Metagenomic Analysis of the Human Distal Gut Microbiome. Science 2006, 312 (5778), 1355–1359. https://doi.org/10.1126/science.1124234.

(869) Wu, X.; Xia, Y.; He, F.; Zhu, C.; Ren, W. Intestinal Mycobiota in Health and Diseases: From a Disrupted Equilibrium to Clinical Opportunities. Microbiome 2021, 9 (1), 60. https://doi.org/10.1186/s40168-021-01024-x.

(870) Mowat, A. M.; Agace, W. W. Regional Specialization within the Intestinal Immune System. Nat. Rev. Immunol. 2014, 14 (10), 667–685. https://doi.org/10.1038/nri3738.

(871) Maurice, C. F.; Haiser, H. J.; Turnbaugh, P. J. Xenobiotics Shape the Physiology and Gene Expression of the Active Human Gut Microbiome. Cell 2013, 152 (1–2), 39–50. https://doi.org/10.1016/j.cell.2012.10.052.

(872) Schirmer, M.; Franzosa, E. A.; Lloyd-Price, J.; McIver, L. J.; Schwager, R.; Poon, T. W.; Ananthakrishnan, A. N.; Andrews, E.; Barron, G.; Lake, K.; Prasad, M.; Sauk, J.; Stevens, B.; Wilson, R. G.; Braun, J.; Denson, L. A.; Kugathasan, S.; McGovern, D. P. B.; Vlamakis, H.; Xavier, R. J.; Huttenhower, C. Dynamics of Metatranscription in the Inflammatory Bowel Disease Gut Microbiome. Nat. Microbiol. 2018, 3 (3), 337–346. https://doi.org/10.1038/s41564-017-0089-z.

(873) Azimi, T.; Nasiri, M. J.; Chirani, A. S.; Pouriran, R.; Dabiri, H. The Role of Bacteria in the Inflammatory Bowel Disease Development: A Narrative Review. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2018, 126 (4), 275–283. https://doi.org/10.1111/apm.12814.

(874) Zuo, T.; Ng, S. C. The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Front. Microbiol. 2018, 9. https://doi.org/10.3389/fmicb.2018.02247.

(875) Berkes, J.; Viswanathan, V. K.; Savkovic, S. D.; Hecht, G. Intestinal Epithelial Responses to Enteric Pathogens: Effects on the Tight Junction Barrier, Ion Transport, and Inflammation. Gut 2003, 52 (3), 439–451.

(876) Turner, J. R. Intestinal Mucosal Barrier Function in Health and Disease. Nat. Rev. Immunol. 2009, 9 (11), 799–809. https://doi.org/10.1038/nri2653.

(877) Natividad, J. M. M.; Verdu, E. F. Modulation of Intestinal Barrier by Intestinal Microbiota: Pathological and Therapeutic Implications. Pharmacol. Res. 2013, 69 (1), 42–51. https://doi.org/10.1016/j.phrs.2012.10.007.

(878) Turner, J. R.; Buschmann, M. M.; Romero-Calvo, I.; Sailer, A.; Shen, L. The Role of Molecular Remodeling in Differential Regulation of Tight Junction Permeability. Semin. Cell Dev. Biol. 2014, 36, 204–212. https://doi.org/10.1016/j.semcdb.2014.09.022.

(879) van Lier, D.; Geven, C.; Leijte, G. P.; Pickkers, P. Experimental Human Endotoxemia as a Model of Systemic Inflammation. Biochimie 2019, 159, 99–106. https://doi.org/10.1016/j.biochi.2018.06.014.

(880) König, J.; Wells, J.; Cani, P. D.; García-Ródenas, C. L.; MacDonald, T.; Mercenier, A.; Whyte, J.; Troost, F.; Brummer, R.-J. Human Intestinal Barrier Function in Health and Disease. Clin. Transl. Gastroenterol. 2016, 7 (10), e196. https://doi.org/10.1038/ctg.2016.54.

(881) Wells, J. M.; Brummer, R. J.; Derrien, M.; MacDonald, T. T.; Troost, F.; Cani, P. D.; Theodorou, V.; Dekker, J.; Méheust, A.; de Vos, W. M.; Mercenier, A.; Nauta, A.; Garcia-Rodenas, C. L. Homeostasis of the Gut Barrier and Potential Biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312 (3), G171–G193. https://doi.org/10.1152/ajpgi.00048.2015.

(882) Jayashree, B.; Bibin, Y. S.; Prabhu, D.; Shanthirani, C. S.; Gokulakrishnan, K.; Lakshmi, B. S.; Mohan, V.; Balasubramanyam, M. Increased Circulatory Levels of Lipopolysaccharide (LPS) and Zonulin Signify Novel Biomarkers of Proinflammation in Patients with Type 2 Diabetes. Mol. Cell. Biochem. 2014, 388 (1), 203–210. https://doi.org/10.1007/s11010-013-1911-4.

(883) Magalhaes, I.; Pingris, K.; Poitou, C.; Bessoles, S.; Venteclef, N.; Kiaf, B.; Beaudoin, L.; Da Silva, J.; Allatif, O.; Rossjohn, J.; Kjer-Nielsen, L.; McCluskey, J.; Ledoux, S.; Genser, L.; Torcivia, A.; Soudais, C.; Lantz, O.; Boitard, C.; Aron-Wisnewsky, J.; Larger, E.; Clément, K.; Lehuen, A. Mucosal-Associated Invariant T Cell Alterations in Obese and Type 2 Diabetic Patients. J. Clin. Invest. 2015, 125 (4), 1752–1762. https://doi.org/10.1172/JCI78941.

(884) Gomes, J. M. G.; Costa, J. de A.; Alfenas, R. de C. G. Metabolic Endotoxemia and Diabetes Mellitus: A Systematic Review. Metabolism. 2017, 68, 133–144. https://doi.org/10.1016/j.metabol.2016.12.009.

(885) Cani, P. D.; Amar, J.; Iglesias, M. A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A. M.; Fava, F.; Tuohy, K. M.; Chabo, C.; Waget, A.; Delmée, E.; Cousin, B.; Sulpice, T.; Chamontin, B.; Ferrières, J.; Tanti, J.-F.; Gibson, G. R.; Casteilla, L.; Delzenne, N. M.; Alessi, M. C.; Burcelin, R. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes 2007, 56 (7), 1761–1772. https://doi.org/10.2337/db06-1491.

(886) Lassenius, M. I.; Pietiläinen, K. H.; Kaartinen, K.; Pussinen, P. J.; Syrjänen, J.; Forsblom, C.; Pörsti, I.; Rissanen, A.; Kaprio, J.; Mustonen, J.; Groop, P.-H.; Lehto, M.; FinnDiane Study Group. Bacterial Endotoxin Activity in Human Serum Is Associated with Dyslipidemia, Insulin Resistance, Obesity, and Chronic Inflammation. Diabetes Care 2011, 34 (8), 1809–1815. https://doi.org/10.2337/dc10-2197.

(887) Everard, A.; Geurts, L.; Caesar, R.; Van Hul, M.; Matamoros, S.; Duparc, T.; Denis, R. G. P.; Cochez, P.; Pierard, F.; Castel, J.; Bindels, L. B.; Plovier, H.; Robine, S.; Muccioli, G. G.; Renauld, J.-C.; Dumoutier, L.; Delzenne, N. M.; Luquet, S.; Bäckhed, F.; Cani, P. D. Intestinal Epithelial MyD88 Is a Sensor Switching Host Metabolism towards Obesity According to Nutritional Status. Nat. Commun. 2014, 5, 5648. https://doi.org/10.1038/ncomms6648.

(888) Keshavarzian, A.; Farhadi, A.; Forsyth, C. B.; Rangan, J.; Jakate, S.; Shaikh, M.; Banan, A.; Fields, J. Z. Evidence That Chronic Alcohol Exposure Promotes Intestinal Oxidative Stress, Intestinal Hyperpermeability and Endotoxemia Prior to Development of Alcoholic Steatohepatitis in Rats. J. Hepatol. 2009, 50 (3), 538–547. https://doi.org/10.1016/j.jhep.2008.10.028.

(889) Kang, S.; Denman, S. E.; Morrison, M.; Yu, Z.; Dore, J.; Leclerc, M.; McSweeney, C. S. Dysbiosis of Fecal Microbiota in Crohn’s Disease Patients as Revealed by a Custom Phylogenetic Microarray. Inflamm. Bowel Dis. 2010, 16 (12), 2034–2042. https://doi.org/10.1002/ibd.21319.

(890) Bhattarai, Y.; Muniz Pedrogo, D. A.; Kashyap, P. C. Irritable Bowel Syndrome: A Gut Microbiota-Related Disorder? Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312 (1), G52–G62. https://doi.org/10.1152/ajpgi.00338.2016.

(891) Salem, A. E.; Singh, R.; Ayoub, Y. K.; Khairy, A. M.; Mullin, G. E. The Gut Microbiome and Irritable Bowel Syndrome: State of Art Review. Arab J. Gastroenterol. Off. Publ. Pan-Arab Assoc. Gastroenterol. 2018, 19 (3), 136–141. https://doi.org/10.1016/j.ajg.2018.02.008.

(892) Gianchecchi, E.; Fierabracci, A. Recent Advances on Microbiota Involvement in the Pathogenesis of Autoimmunity. Int. J. Mol. Sci. 2019, 20 (2). https://doi.org/10.3390/ijms20020283.

(893) Buscarinu, M. C.; Fornasiero, A.; Romano, S.; Ferraldeschi, M.; Mechelli, R.; Reniè, R.; Morena, E.; Romano, C.; Pellicciari, G.; Landi, A. C.; Salvetti, M.; Ristori, G. The Contribution of Gut Barrier Changes to Multiple Sclerosis Pathophysiology. Front. Immunol. 2019, 10, 1916. https://doi.org/10.3389/fimmu.2019.01916.

(894) Wong, S. H.; Yu, J. Gut Microbiota in Colorectal Cancer: Mechanisms of Action and Clinical Applications. Nat. Rev. Gastroenterol. Hepatol. 2019, 16 (11), 690–704. https://doi.org/10.1038/s41575-019-0209-8.

(895) Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; Zhang, X.; Yang, D.; Yang, Y.; Meng, H.; Li, W.; Melgiri, N. D.; Licinio, J.; Wei, H.; Xie, P. Gut Microbiome Remodeling Induces Depressive-like Behaviors through a Pathway Mediated by the Host’s Metabolism. Mol. Psychiatry 2016, 21 (6), 786–796. https://doi.org/10.1038/mp.2016.44.

(896) Scheperjans, F.; Aho, V.; Pereira, P. A. B.; Koskinen, K.; Paulin, L.; Pekkonen, E.; Haapaniemi, E.; Kaakkola, S.; Eerola‐Rautio, J.; Pohja, M.; Kinnunen, E.; Murros, K.; Auvinen, P. Gut Microbiota Are Related to Parkinson’s Disease and Clinical Phenotype. Mov. Disord. 2015, 30 (3), 350–358. https://doi.org/10.1002/mds.26069.

(897) Le Page, A.; Dupuis, G.; Frost, E. H.; Larbi, A.; Pawelec, G.; Witkowski, J. M.; Fulop, T. Role of the Peripheral Innate Immune System in the Development of Alzheimer’s Disease. Exp. Gerontol. 2018, 107, 59–66. https://doi.org/10.1016/j.exger.2017.12.019.

(898) Hirschberg, S.; Gisevius, B.; Duscha, A.; Haghikia, A. Implications of Diet and The Gut Microbiome in Neuroinflammatory and Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20 (12). https://doi.org/10.3390/ijms20123109.

(899) Clemente, M. G.; De Virgiliis, S.; Kang, J. S.; Macatagney, R.; Musu, M. P.; Di Pierro, M. R.; Drago, S.; Congia, M.; Fasano, A. Early Effects of Gliadin on Enterocyte Intracellular Signalling Involved in Intestinal Barrier Function. Gut 2003, 52 (2), 218–223. https://doi.org/10.1136/gut.52.2.218.

(900) Lammers, K. M.; Lu, R.; Brownley, J.; Lu, B.; Gerard, C.; Thomas, K.; Rallabhandi, P.; Shea-Donohue, T.; Tamiz, A.; Alkan, S.; Netzel-Arnett, S.; Antalis, T.; Vogel, S. N.; Fasano, A. Gliadin Induces an Increase in Intestinal Permeability and Zonulin Release by Binding to the Chemokine Receptor CXCR3. Gastroenterology 2008, 135 (1), 194-204.e3. https://doi.org/10.1053/j.gastro.2008.03.023.

(901) Valitutti, F.; Fasano, A. Breaking Down Barriers: How Understanding Celiac Disease Pathogenesis Informed the Development of Novel Treatments. Dig. Dis. Sci. 2019, 64 (7), 1748–1758. https://doi.org/10.1007/s10620-019-05646-y.

(902) Cryan, J. F.; Dinan, T. G. Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nat. Rev. Neurosci. 2012, 13 (10), 701–712. https://doi.org/10.1038/nrn3346.

(903) Barrett, E.; Ross, R. P.; O’Toole, P. W.; Fitzgerald, G. F.; Stanton, C. γ-Aminobutyric Acid Production by Culturable Bacteria from the Human Intestine. J. Appl. Microbiol. 2012, 113 (2), 411–417. https://doi.org/10.1111/j.1365-2672.2012.05344.x.

(904) Strandwitz, P.; Kim, K. H.; Terekhova, D.; Liu, J. K.; Sharma, A.; Levering, J.; McDonald, D.; Dietrich, D.; Ramadhar, T. R.; Lekbua, A.; Mroue, N.; Liston, C.; Stewart, E. J.; Dubin, M. J.; Zengler, K.; Knight, R.; Gilbert, J. A.; Clardy, J.; Lewis, K. GABA-Modulating Bacteria of the Human Gut Microbiota. Nat. Microbiol. 2019, 4 (3), 396–403. https://doi.org/10.1038/s41564-018-0307-3.

(905) Nikolaus, S.; Schulte, B.; Al-Massad, N.; Thieme, F.; Schulte, D. M.; Bethge, J.; Rehman, A.; Tran, F.; Aden, K.; Häsler, R.; Moll, N.; Schütze, G.; Schwarz, M. J.; Waetzig, G. H.; Rosenstiel, P.; Krawczak, M.; Szymczak, S.; Schreiber, S. Increased Tryptophan Metabolism Is Associated With Activity of Inflammatory Bowel Diseases. Gastroenterology 2017, 153 (6), 1504-1516.e2. https://doi.org/10.1053/j.gastro.2017.08.028.

(906) Li, N.; Ghia, J.-E.; Wang, H.; McClemens, J.; Cote, F.; Suehiro, Y.; Mallet, J.; Khan, W. I. Serotonin Activates Dendritic Cell Function in the Context of Gut Inflammation. Am. J. Pathol. 2011, 178 (2), 662–671. https://doi.org/10.1016/j.ajpath.2010.10.028.

(907) Gershon, M. D. 5-Hydroxytryptamine (Serotonin) in the Gastrointestinal Tract. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20 (1), 14–21. https://doi.org/10.1097/MED.0b013e32835bc703.

(908) Foster, J. A.; Rinaman, L.; Cryan, J. F. Stress & the Gut-Brain Axis: Regulation by the Microbiome. Neurobiol. Stress 2017, 7, 124–136. https://doi.org/10.1016/j.ynstr.2017.03.001.

(909) Rieder, R.; Wisniewski, P. J.; Alderman, B. L.; Campbell, S. C. Microbes and Mental Health: A Review. Brain. Behav. Immun. 2017, 66, 9–17. https://doi.org/10.1016/j.bbi.2017.01.016.

(910) Dinan, T. G.; Cryan, J. F. Gut Instincts: Microbiota as a Key Regulator of Brain Development, Ageing and Neurodegeneration. J. Physiol. 2017, 595 (2), 489–503. https://doi.org/10.1113/JP273106.

(911) Rea, K.; Dinan, T. G.; Cryan, J. F. Gut Microbiota: A Perspective for Psychiatrists. Neuropsychobiology 2020, 79 (1), 50–62. https://doi.org/10.1159/000504495.

(912) Bailey, M. T.; Coe, C. L. Maternal Separation Disrupts the Integrity of the Intestinal Microflora in Infant Rhesus Monkeys. Dev. Psychobiol. 1999, 35 (2), 146–155.

(913) Bailey, M. T.; Dowd, S. E.; Galley, J. D.; Hufnagle, A. R.; Allen, R. G.; Lyte, M. Exposure to a Social Stressor Alters the Structure of the Intestinal Microbiota: Implications for Stressor-Induced Immunomodulation. Brain. Behav. Immun. 2011, 25 (3), 397–407. https://doi.org/10.1016/j.bbi.2010.10.023.

(914) De Palma, G.; Blennerhassett, P.; Lu, J.; Deng, Y.; Park, A. J.; Green, W.; Denou, E.; Silva, M. A.; Santacruz, A.; Sanz, Y.; Surette, M. G.; Verdu, E. F.; Collins, S. M.; Bercik, P. Microbiota and Host Determinants of Behavioural Phenotype in Maternally Separated Mice. Nat. Commun. 2015, 6, 7735. https://doi.org/10.1038/ncomms8735.

(915) Gareau, M. G.; Wine, E.; Rodrigues, D. M.; Cho, J. H.; Whary, M. T.; Philpott, D. J.; Macqueen, G.; Sherman, P. M. Bacterial Infection Causes Stress-Induced Memory Dysfunction in Mice. Gut 2011, 60 (3), 307–317. https://doi.org/10.1136/gut.2009.202515.

(916) Lotrich, F. E.; El-Gabalawy, H.; Guenther, L. C.; Ware, C. F. The Role of Inflammation in the Pathophysiology of Depression: Different Treatments and Their Effects. J. Rheumatol. Suppl. 2011, 88, 48–54. https://doi.org/10.3899/jrheum.110903.

(917) Leonard, B.; Maes, M. Mechanistic Explanations How Cell-Mediated Immune Activation, Inflammation and Oxidative and Nitrosative Stress Pathways and Their Sequels and Concomitants Play a Role in the Pathophysiology of Unipolar Depression. Neurosci. Biobehav. Rev. 2012, 36 (2), 764–785. https://doi.org/10.1016/j.neubiorev.2011.12.005.

(918) Zhernakova, A. and col. Population-Based Metagenomics Analysis Reveals Markers for Gut Microbiome Composition and Diversity. Science 2016, 352 (6285), 565–569. https://doi.org/10.1126/science.aad3369.

(919) Cheung, S. G.; Goldenthal, A. R.; Uhlemann, A.-C.; Mann, J. J.; Miller, J. M.; Sublette, M. E. Systematic Review of Gut Microbiota and Major Depression. Front. Psychiatry 2019, 10. https://doi.org/10.3389/fpsyt.2019.00034.

(920) Shanks, N.; Larocque, S.; Meaney, M. J. Neonatal Endotoxin Exposure Alters the Development of the Hypothalamic-Pituitary-Adrenal Axis: Early Illness and Later Responsivity to Stress. J. Neurosci. Off. J. Soc. Neurosci. 1995, 15 (1 Pt 1), 376–384.

(921) Mayerhofer, R.; Fröhlich, E. E.; Reichmann, F.; Farzi, A.; Kogelnik, N.; Fröhlich, E.; Sattler, W.; Holzer, P. Diverse Action of Lipoteichoic Acid and Lipopolysaccharide on Neuroinflammation, Blood-Brain Barrier Disruption, and Anxiety in Mice. Brain. Behav. Immun. 2017, 60, 174–187. https://doi.org/10.1016/j.bbi.2016.10.011.

(922) Dodd, D.; Spitzer, M. H.; Van Treuren, W.; Merrill, B. D.; Hryckowian, A. J.; Higginbottom, S. K.; Le, A.; Cowan, T. M.; Nolan, G. P.; Fischbach, M. A.; Sonnenburg, J. L. A Gut Bacterial Pathway Metabolizes Aromatic Amino Acids into Nine Circulating Metabolites. Nature 2017, 551 (7682), 648–652. https://doi.org/10.1038/nature24661.

(923) Clarke, G.; Fitzgerald, P.; Cryan, J. F.; Cassidy, E. M.; Quigley, E. M.; Dinan, T. G. Tryptophan Degradation in Irritable Bowel Syndrome: Evidence of Indoleamine 2,3-Dioxygenase Activation in a Male Cohort. BMC Gastroenterol. 2009, 9, 6. https://doi.org/10.1186/1471-230X-9-6.

(924) Schwarcz, R.; Bruno, J. P.; Muchowski, P. J.; Wu, H.-Q. Kynurenines in the Mammalian Brain: When Physiology Meets Pathology. Nat. Rev. Neurosci. 2012, 13 (7), 465–477. https://doi.org/10.1038/nrn3257.

(925) O’Mahony, S. M.; Clarke, G.; Borre, Y. E.; Dinan, T. G.; Cryan, J. F. Serotonin, Tryptophan Metabolism and the Brain-Gut-Microbiome Axis. Behav. Brain Res. 2015, 277, 32–48. https://doi.org/10.1016/j.bbr.2014.07.027.

(926) Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23 (6), 716–724. https://doi.org/10.1016/j.chom.2018.05.003.

(927) Erdman, S. E.; Poutahidis, T. Microbes and Oxytocin: Benefits for Host Physiology and Behavior. Int. Rev. Neurobiol. 2016, 131, 91–126. https://doi.org/10.1016/bs.irn.2016.07.004.

(928) Johnson, K. V.-A. Gut Microbiome Composition and Diversity Are Related to Human Personality Traits. Hum. Microbiome J. 2020, 15, 100069. https://doi.org/10.1016/j.humic.2019.100069.

(929) De Angelis, M.; Piccolo, M.; Vannini, L.; Siragusa, S.; De Giacomo, A.; Serrazzanetti, D. I.; Cristofori, F.; Guerzoni, M. E.; Gobbetti, M.; Francavilla, R. Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified. PloS One 2013, 8 (10), e76993. https://doi.org/10.1371/journal.pone.0076993.

(930) McElhanon, B. O.; McCracken, C.; Karpen, S.; Sharp, W. G. Gastrointestinal Symptoms in Autism Spectrum Disorder: A Meta-Analysis. Pediatrics 2014, 133 (5), 872–883. https://doi.org/10.1542/peds.2013-3995.

(931) Li, Q.; Han, Y.; Dy, A. B. C.; Hagerman, R. J. The Gut Microbiota and Autism Spectrum Disorders. Front. Cell. Neurosci. 2017, 11, 120. https://doi.org/10.3389/fncel.2017.00120.

(932) Nguyen, T. T.; Kosciolek, T.; Eyler, L. T.; Knight, R.; Jeste, D. V. Overview and Systematic Review of Studies of Microbiome in Schizophrenia and Bipolar Disorder. J. Psychiatr. Res. 2018, 99, 50–61. https://doi.org/10.1016/j.jpsychires.2018.01.013.

(933) Braz, G. R. F.; Silva, S. C. de A.; Pedroza, A. A. da S.; de Lemos, M. D.; de Lima, F. A.; da Silva, A. I.; Lagranha, C. J. Fluoxetine Administration in Juvenile Overfed Rats Improves Hypothalamic Mitochondrial Respiration and REDOX Status and Induces Mitochondrial Biogenesis Transcriptional Expression. Eur. J. Pharmacol. 2020, 881, 173200. https://doi.org/10.1016/j.ejphar.2020.173200.

(934) Braz, G. R. F.; da Silva, A. I.; Silva, S. C. A.; Pedroza, A. A. S.; de Lemos, M. D. T. B.; de Lima, F. A. S.; Silva, T. L. A.; Lagranha, C. J. Chronic Serotonin Reuptake Inhibition Uncouples Brown Fat Mitochondria and Induces Beiging/Browning Process of White Fat in Overfed Rats. Life Sci. 2020, 245, 117307. https://doi.org/10.1016/j.lfs.2020.117307.

(935) Smith, R. S. The Macrophage Theory of Depression. Med. Hypotheses 1991, 35 (4), 298–306. https://doi.org/10.1016/0306-9877(91)90272-Z.

(936) Howren, M. B.; Lamkin, D. M.; Suls, J. Associations of Depression with C-Reactive Protein, IL-1, and IL-6: A Meta-Analysis. Psychosom. Med. 2009, 71 (2), 171–186. https://doi.org/10.1097/PSY.0b013e3181907c1b.

(937) Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E. K.; Lanctôt, K. L. A Meta-Analysis of Cytokines in Major Depression. Biol. Psychiatry 2010, 67 (5), 446–457. https://doi.org/10.1016/j.biopsych.2009.09.033.

(938) Haapakoski, R.; Mathieu, J.; Ebmeier, K. P.; Alenius, H.; Kivimäki, M. Cumulative Meta-Analysis of Interleukins 6 and 1β, Tumour Necrosis Factor α and C-Reactive Protein in Patients with Major Depressive Disorder. Brain. Behav. Immun. 2015, 49, 206–215. https://doi.org/10.1016/j.bbi.2015.06.001.

(939) Köhler, C. A.; Freitas, T. H.; Maes, M.; de Andrade, N. Q.; Liu, C. S.; Fernandes, B. S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; Raison, C. L.; Miller, B. J.; Lanctôt, K. L.; Carvalho, A. F. Peripheral Cytokine and Chemokine Alterations in Depression: A Meta-Analysis of 82 Studies. Acta Psychiatr. Scand. 2017, 135 (5), 373–387. https://doi.org/10.1111/acps.12698.

(940) Ng, A.; Tam, W. W.; Zhang, M. W.; Ho, C. S.; Husain, S. F.; McIntyre, R. S.; Ho, R. C. IL-1β, IL-6, TNF- α and CRP in Elderly Patients with Depression or Alzheimer’s Disease: Systematic Review and Meta-Analysis. Sci. Rep. 2018, 8 (1), 12050. https://doi.org/10.1038/s41598-018-30487-6.

(941) Liu, J. J.; Wei, Y. B.; Strawbridge, R.; Bao, Y.; Chang, S.; Shi, L.; Que, J.; Gadad, B. S.; Trivedi, M. H.; Kelsoe, J. R.; Lu, L. Peripheral Cytokine Levels and Response to Antidepressant Treatment in Depression: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2020, 25 (2), 339–350. https://doi.org/10.1038/s41380-019-0474-5.

(942) Wang, H.; Li, P.; Zhang, Y.; Zhang, C.; Li, K.; Song, C. Cytokine Changes in Different Types of Depression: Specific or General? Neurol. Psychiatry Brain Res. 2020, 36, 39–51. https://doi.org/10.1016/j.npbr.2020.02.009.

(943) Petralia, M. C.; Mazzon, E.; Fagone, P.; Basile, M. S.; Lenzo, V.; Quattropani, M. C.; Di Nuovo, S.; Bendtzen, K.; Nicoletti, F. The Cytokine Network in the Pathogenesis of Major Depressive Disorder. Close to Translation? Autoimmun. Rev. 2020, 19 (5), 102504. https://doi.org/10.1016/j.autrev.2020.102504.

(944) Poole, H.; White, S.; Blake, C.; Murphy, P.; Bramwell, R. Depression in Chronic Pain Patients: Prevalence and Measurement. Pain Pract. Off. J. World Inst. Pain 2009, 9 (3), 173–180. https://doi.org/10.1111/j.1533-2500.2009.00274.x.

(945) Ren, K.; Dubner, R. Interactions between the Immune and Nervous Systems in Pain. Nat. Med. 2010, 16 (11), 1267–1276. https://doi.org/10.1038/nm.2234.

(946) Pan, A.; Keum, N.; Okereke, O. I.; Sun, Q.; Kivimaki, M.; Rubin, R. R.; Hu, F. B. Bidirectional Association between Depression and Metabolic Syndrome: A Systematic Review and Meta-Analysis of Epidemiological Studies. Diabetes Care 2012, 35 (5), 1171–1180. https://doi.org/10.2337/dc11-2055.

(947) Matcham, F.; Norton, S.; Scott, D. L.; Steer, S.; Hotopf, M. Symptoms of Depression and Anxiety Predict Treatment Response and Long-Term Physical Health Outcomes in Rheumatoid Arthritis: Secondary Analysis of a Randomized Controlled Trial. Rheumatol. Oxf. Engl. 2016, 55 (2), 268–278. https://doi.org/10.1093/rheumatology/kev306.

(948) Figueiredo-Braga, M.; Cornaby, C.; Cortez, A.; Bernardes, M.; Terroso, G.; Figueiredo, M.; Mesquita, C. D. S.; Costa, L.; Poole, B. D. Depression and Anxiety in Systemic Lupus Erythematosus: The Crosstalk between Immunological, Clinical, and Psychosocial Factors. Medicine (Baltimore) 2018, 97 (28), e11376. https://doi.org/10.1097/MD.0000000000011376.

(949) Akhondzadeh, S.; Jafari, S.; Raisi, F.; Nasehi, A. A.; Ghoreishi, A.; Salehi, B.; Mohebbi-Rasa, S.; Raznahan, M.; Kamalipour, A. Clinical Trial of Adjunctive Celecoxib Treatment in Patients with Major Depression: A Double Blind and Placebo Controlled Trial. Depress. Anxiety 2009, 26 (7), 607–611. https://doi.org/10.1002/da.20589.

(950) Müller, N.; Schwarz, M. J.; Dehning, S.; Douhe, A.; Cerovecki, A.; Goldstein-Müller, B.; Spellmann, I.; Hetzel, G.; Maino, K.; Kleindienst, N.; Möller, H.-J.; Arolt, V.; Riedel, M. The Cyclooxygenase-2 Inhibitor Celecoxib Has Therapeutic Effects in Major Depression: Results of a Double-Blind, Randomized, Placebo Controlled, Add-on Pilot Study to Reboxetine. Mol. Psychiatry 2006, 11 (7), 680–684. https://doi.org/10.1038/sj.mp.4001805.

(951) Raison, C. L.; Rutherford, R. E.; Woolwine, B. J.; Shuo, C.; Schettler, P.; Drake, D. F.; Haroon, E.; Miller, A. H. A Randomized Controlled Trial of the Tumor Necrosis Factor Antagonist Infliximab for Treatment-Resistant Depression: The Role of Baseline Inflammatory Biomarkers. JAMA Psychiatry 2013, 70 (1), 31–41. https://doi.org/10.1001/2013.jamapsychiatry.4.

(952) Adzic, M.; Brkic, Z.; Mitic, M.; Francija, E.; Jovicic, M. J.; Radulovic, J.; Maric, N. P. Therapeutic Strategies for Treatment of Inflammation-Related Depression. Curr. Neuropharmacol. 2018, 16 (2), 176–209. https://doi.org/10.2174/1570159X15666170828163048.

(953) Kappelmann, N.; Lewis, G.; Dantzer, R.; Jones, P. B.; Khandaker, G. M. Antidepressant Activity of Anti-Cytokine Treatment: A Systematic Review and Meta-Analysis of Clinical Trials of Chronic Inflammatory Conditions. Mol. Psychiatry 2018, 23 (2), 335–343. https://doi.org/10.1038/mp.2016.167.

(954) Köhler, C. A.; Freitas, T. H.; Stubbs, B.; Maes, M.; Solmi, M.; Veronese, N.; de Andrade, N. Q.; Morris, G.; Fernandes, B. S.; Brunoni, A. R.; Herrmann, N.; Raison, C. L.; Miller, B. J.; Lanctôt, K. L.; Carvalho, A. F. Peripheral Alterations in Cytokine and Chemokine Levels After Antidepressant Drug Treatment for Major Depressive Disorder: Systematic Review and Meta-Analysis. Mol. Neurobiol. 2018, 55 (5), 4195–4206. https://doi.org/10.1007/s12035-017-0632-1.

(955) Wang, L.; Wang, R.; Liu, L.; Qiao, D.; Baldwin, D. S.; Hou, R. Effects of SSRIs on Peripheral Inflammatory Markers in Patients with Major Depressive Disorder: A Systematic Review and Meta-Analysis. Brain. Behav. Immun. 2019, 79, 24–38. https://doi.org/10.1016/j.bbi.2019.02.021.

(956) Capuron, L.; Miller, A. H. Cytokines and Psychopathology: Lessons from Interferon-Alpha. Biol. Psychiatry 2004, 56 (11), 819–824. https://doi.org/10.1016/j.biopsych.2004.02.009.

(957) Raison, C. L.; Capuron, L.; Miller, A. H. Cytokines Sing the Blues: Inflammation and the Pathogenesis of Depression. Trends Immunol. 2006, 27 (1), 24–31. https://doi.org/10.1016/j.it.2005.11.006.

(958) Cervenka, I.; Agudelo, L. Z.; Ruas, J. L. Kynurenines: Tryptophan’s Metabolites in Exercise, Inflammation, and Mental Health. Science 2017, 357 (6349), eaaf9794. https://doi.org/10.1126/science.aaf9794.

(959) Agudelo, L. Z.; Ferreira, D. M. S.; Dadvar, S.; Cervenka, I.; Ketscher, L.; Izadi, M.; Zhengye, L.; Furrer, R.; Handschin, C.; Venckunas, T.; Brazaitis, M.; Kamandulis, S.; Lanner, J. T.; Ruas, J. L. Skeletal Muscle PGC-1α1 Reroutes Kynurenine Metabolism to Increase Energy Efficiency and Fatigue-Resistance. Nat. Commun. 2019, 10 (1), 2767. https://doi.org/10.1038/s41467-019-10712-0.

(960) Clarke, G.; McKernan, D. P.; Gaszner, G.; Quigley, E. M.; Cryan, J. F.; Dinan, T. G. A Distinct Profile of Tryptophan Metabolism along the Kynurenine Pathway Downstream of Toll-Like Receptor Activation in Irritable Bowel Syndrome. Front. Pharmacol. 2012, 3, 90. https://doi.org/10.3389/fphar.2012.00090.

(961) Oxenkrug, G. Insulin Resistance and Dysregulation of Tryptophan-Kynurenine and Kynurenine-Nicotinamide Adenine Dinucleotide Metabolic Pathways. Mol. Neurobiol. 2013, 48 (2), 294–301. https://doi.org/10.1007/s12035-013-8497-4.

(962) Mangge, H.; Summers, K. L.; Meinitzer, A.; Zelzer, S.; Almer, G.; Prassl, R.; Schnedl, W. J.; Reininghaus, E.; Paulmichl, K.; Weghuber, D.; Fuchs, D. Obesity-Related Dysregulation of the Tryptophan-Kynurenine Metabolism: Role of Age and Parameters of the Metabolic Syndrome. Obes. Silver Spring Md 2014, 22 (1), 195–201. https://doi.org/10.1002/oby.20491.

(963) Song, P.; Ramprasath, T.; Wang, H.; Zou, M.-H. Abnormal Kynurenine Pathway of Tryptophan Catabolism in Cardiovascular Diseases. Cell. Mol. Life Sci. CMLS 2017, 74 (16), 2899–2916. https://doi.org/10.1007/s00018-017-2504-2.

(964) Mallmann, N. H.; Lima, E. S.; Lalwani, P. Dysregulation of Tryptophan Catabolism in Metabolic Syndrome. Metab. Syndr. Relat. Disord. 2018, 16 (3), 135–142. https://doi.org/10.1089/met.2017.0097.

(965) Ostapiuk, A.; Urbanska, E. M. Kynurenic Acid in Neurodegenerative Disorders-Unique Neuroprotection or Double-Edged Sword? CNS Neurosci. Ther. 2022, 28 (1), 19–35. https://doi.org/10.1111/cns.13768.

(966) Burhans, M. S.; Dailey, C.; Beard, Z.; Wiesinger, J.; Murray-Kolb, L.; Jones, B. C.; Beard, J. L. Iron Deficiency: Differential Effects on Monoamine Transporters. Nutr. Neurosci. 2005, 8 (1), 31–38. https://doi.org/10.1080/10284150500047070.

(967) Eby, G. A.; Eby, K. L.; Murk, H. Magnesium and Major Depression. In Magnesium in the Central Nervous System; Vink, R., Nechifor, M., Eds.; University of Adelaide Press: Adelaide (AU), 2011.

(968) Fukuwatari, T.; Shibata, K. Nutritional Aspect of Tryptophan Metabolism. Int. J. Tryptophan Res. IJTR 2013, 6 (Suppl 1), 3–8. https://doi.org/10.4137/IJTR.S11588.

(969) Ward, M. S.; Lamb, J.; May James, M.; Harrison Fiona, E. Behavioral and Monoamine Changes Following Severe Vitamin C Deficiency. J. Neurochem. 2013, 124 (3), 363–375. https://doi.org/10.1111/jnc.12069.

(970) Styczeń, K.; Sowa-Kućma, M.; Siwek, M.; Dudek, D.; Reczyński, W.; Misztak, P.; Szewczyk, B.; Topór-Mądry, R.; Opoka, W.; Nowak, G. Study of the Serum Copper Levels in Patients with Major Depressive Disorder. Biol. Trace Elem. Res. 2016, 174 (2), 287–293. https://doi.org/10.1007/s12011-016-0720-5.

(971) Kennedy, D. O. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients 2016, 8 (2), 68. https://doi.org/10.3390/nu8020068.

(972) Styczeń, K.; Sowa-Kućma, M.; Siwek, M.; Dudek, D.; Reczyński, W.; Szewczyk, B.; Misztak, P.; Topór-Mądry, R.; Opoka, W.; Nowak, G. The Serum Zinc Concentration as a Potential Biological Marker in Patients with Major Depressive Disorder. Metab. Brain Dis. 2017, 32 (1), 97–103. https://doi.org/10.1007/s11011-016-9888-9.

(973) Schwalfenberg, G. K.; Genuis, S. J. The Importance of Magnesium in Clinical Healthcare. Scientifica 2017, 2017. https://doi.org/10.1155/2017/4179326.

(974) Lee, H.-S.; Chao, H.-H.; Huang, W.-T.; Chen, S. C.-C.; Yang, H.-Y. Psychiatric Disorders Risk in Patients with Iron Deficiency Anemia and Association with Iron Supplementation Medications: A Nationwide Database Analysis. BMC Psychiatry 2020, 20 (1), 216. https://doi.org/10.1186/s12888-020-02621-0.

(975) EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Niacin. EFSA J. 2014, 12 (7), 3759. https://doi.org/10.2903/j.efsa.2014.3759.

(976) Briand, P. Avis de l’Agence Française de Sécurité Sanitaire Des Aliments Relatif à l’emploi de Tryptophane à Hauteur de 1000 Mg Dans Les Compléments Alimentaires; Avis Saisine n° 2009-SA-0057; ANSES: Maisons-Alfort, 2009.

(977) Coppen, A.; Shaw, D. M.; Farrell, J. P. Potentiation of the Antidepressive Effect of a Monoamine-Oxidase Inhibitor by Tryptophan. Lancet Lond. Engl. 1963, 1 (7272), 79–81. https://doi.org/10.1016/s0140-6736(63)91084-5.

(978) Hartmann, E.; Spinweber, C. L. Sleep Induced by L-Tryptophan. Effect of Dosages within the Normal Dietary Intake. J. Nerv. Ment. Dis. 1979, 167 (8), 497–499.

(979) Delgado, P. L.; Charney, D. S.; Price, L. H.; Aghajanian, G. K.; Landis, H.; Heninger, G. R. Serotonin Function and the Mechanism of Antidepressant Action. Reversal of Antidepressant-Induced Remission by Rapid Depletion of Plasma Tryptophan. Arch. Gen. Psychiatry 1990, 47 (5), 411–418. https://doi.org/10.1001/archpsyc.1990.01810170011002.

(980) Young, S. N. Behavioral Effects of Dietary Neurotransmitter Precursors: Basic and Clinical Aspects. Neurosci. Biobehav. Rev. 1996, 20 (2), 313–323. https://doi.org/10.1016/0149-7634(95)00022-4.

(981) Richard, D. M.; Dawes, M. A.; Mathias, C. W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D. M. L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int. J. Tryptophan Res. IJTR 2009, 2, 45–60.

(982) Fernstrom, J. D.; Wurtman, R. J.; Hammarstrom-Wiklund, B.; Rand, W. M.; Munro, H. N.; Davidson, C. S. Diurnal Variations in Plasma Concentrations of Tryptophan, Tryosine, and Other Neutral Amino Acids: Effect of Dietary Protein Intake. Am. J. Clin. Nutr. 1979, 32 (9), 1912–1922. https://doi.org/10.1093/ajcn/32.9.1912.

(983) Lieberman, H. R.; Caballero, B.; Finer, N. The Composition of Lunch Determines Afternoon Plasma Tryptophan Ratios in Humans. J. Neural Transm. 1986, 65 (3–4), 211–217. https://doi.org/10.1007/BF01249083.

(984) Caballero, B.; Finer, N.; Wurtman, R. J. Plasma Amino Acids and Insulin Levels in Obesity: Response to Carbohydrate Intake and Tryptophan Supplements. Metabolism. 1988, 37 (7), 672–676. https://doi.org/10.1016/0026-0495(88)90089-3.

(985) Sainio, E. L.; Pulkki, K.; Young, S. N. L-Tryptophan: Biochemical, Nutritional and Pharmacological Aspects. Amino Acids 1996, 10 (1), 21–47. https://doi.org/10.1007/BF00806091.

(986) Wurtman, R. J.; Wurtman, J. J.; Regan, M. M.; McDermott, J. M.; Tsay, R. H.; Breu, J. J. Effects of Normal Meals Rich in Carbohydrates or Proteins on Plasma Tryptophan and Tyrosine Ratios. Am. J. Clin. Nutr. 2003, 77 (1), 128–132. https://doi.org/10.1093/ajcn/77.1.128.

(987) Steiger, H. Eating Disorders and the Serotonin Connection: State, Trait and Developmental Effects. J. Psychiatry Neurosci. 2004, 29 (1), 20–29.

(988) Bruce, K. R.; Steiger, H.; Young, S. N.; Kin, N. M. K. N. Y.; Israël, M.; Lévesque, M. Impact of Acute Tryptophan Depletion on Mood and Eating-Related Urges in Bulimic and Nonbulimic Women. J. Psychiatry Neurosci. JPN 2009, 34 (5), 376–382.

(989) Sjögren, M.; Nielsen, A. S. M.; Hasselbalch, K. C.; Wøllo, M.; Hansen, J. S. A Systematic Review of Blood-Based Serotonergic Biomarkers in Bulimia Nervosa. Psychiatry Res. 2019, 279, 155–171. https://doi.org/10.1016/j.psychres.2018.12.167.

(990) Falony, G.; Joossens, M.; Vieira-Silva, S.; Wang, J.; Darzi, Y.; Faust, K.; Kurilshikov, A.; Bonder, M. J.; Valles-Colomer, M.; Vandeputte, D.; Tito, R. Y.; Chaffron, S.; Rymenans, L.; Verspecht, C.; De Sutter, L.; Lima-Mendez, G.; D’hoe, K.; Jonckheere, K.; Homola, D.; Garcia, R.; Tigchelaar, E. F.; Eeckhaudt, L.; Fu, J.; Henckaerts, L.; Zhernakova, A.; Wijmenga, C.; Raes, J. Population-Level Analysis of Gut Microbiome Variation. Science 2016, 352 (6285), 560–564. https://doi.org/10.1126/science.aad3503.

(991) Panda, S.; El khader, I.; Casellas, F.; López Vivancos, J.; García Cors, M.; Santiago, A.; Cuenca, S.; Guarner, F.; Manichanh, C. Short-Term Effect of Antibiotics on Human Gut Microbiota. PloS One 2014, 9 (4), e95476. https://doi.org/10.1371/journal.pone.0095476.

(992) Lode, H.; Von der Höh, N.; Ziege, S.; Borner, K.; Nord, C. E. Ecological Effects of Linezolid versus Amoxicillin/Clavulanic Acid on the Normal Intestinal Microflora. Scand. J. Infect. Dis. 2001, 33 (12), 899–903.

(993) Pérez-Cobas, A. E.; Artacho, A.; Knecht, H.; Ferrús, M. L.; Friedrichs, A.; Ott, S. J.; Moya, A.; Latorre, A.; Gosalbes, M. J. Differential Effects of Antibiotic Therapy on the Structure and Function of Human Gut Microbiota. PLoS ONE 2013, 8 (11). https://doi.org/10.1371/journal.pone.0080201.

(994) Lozupone, C. A.; Stombaugh, J. I.; Gordon, J. I.; Jansson, J. K.; Knight, R. Diversity, Stability and Resilience of the Human Gut Microbiota. Nature 2012, 489 (7415), 220–230. https://doi.org/10.1038/nature11550.

(995) Iizumi, T.; Battaglia, T.; Ruiz, V.; Perez Perez, G. I. Gut Microbiome and Antibiotics. Arch. Med. Res. 2017, 48 (8), 727–734. https://doi.org/10.1016/j.arcmed.2017.11.004.

(996) Janarthanan, S.; Ditah, I.; Adler, D. G.; Ehrinpreis, M. N. Clostridium Difficile-Associated Diarrhea and Proton Pump Inhibitor Therapy: A Meta-Analysis. Am. J. Gastroenterol. 2012, 107 (7), 1001–1010. https://doi.org/10.1038/ajg.2012.179.

(997) Jackson, M. A.; Goodrich, J. K.; Maxan, M.-E.; Freedberg, D. E.; Abrams, J. A.; Poole, A. C.; Sutter, J. L.; Welter, D.; Ley, R. E.; Bell, J. T.; Spector, T. D.; Steves, C. J. Proton Pump Inhibitors Alter the Composition of the Gut Microbiota. Gut 2016, 65 (5), 749–756. https://doi.org/10.1136/gutjnl-2015-310861.

(998) Bjarnason, I.; Williams, P.; Smethurst, P.; Peters, T. J.; Levi, A. J. Effect of Non-Steroidal Anti-Inflammatory Drugs and Prostaglandins on the Permeability of the Human Small Intestine. Gut 1986, 27 (11), 1292–1297.

(999) Bjarnason, I.; Peters, T. J. Influence of Anti-Rheumatic Drugs on Gut Permeability and on the Gut Associated Lymphoid Tissue. Baillieres Clin. Rheumatol. 1996, 10 (1), 165–176. https://doi.org/10.1016/s0950-3579(96)80011-2.

(1000)   Bjarnason, I.; Scarpignato, C.; Holmgren, E.; Olszewski, M.; Rainsford, K. D.; Lanas, A. Mechanisms of Damage to the Gastrointestinal Tract From Nonsteroidal Anti-Inflammatory Drugs. Gastroenterology 2018, 154 (3), 500–514. https://doi.org/10.1053/j.gastro.2017.10.049.

(1001)   Otani, K.; Tanigawa, T.; Watanabe, T.; Shimada, S.; Nadatani, Y.; Nagami, Y.; Tanaka, F.; Kamata, N.; Yamagami, H.; Shiba, M.; Tominaga, K.; Fujiwara, Y.; Arakawa, T. Microbiota Plays a Key Role in Non-Steroidal Anti-Inflammatory Drug-Induced Small Intestinal Damage. Digestion 2017, 95 (1), 22–28. https://doi.org/10.1159/000452356.

(1002)   Sigthorsson, G.; Tibble, J.; Hayllar, J.; Menzies, I.; Macpherson, A.; Moots, R.; Scott, D.; Gumpel, M. J.; Bjarnason, I. Intestinal Permeability and Inflammation in Patients on NSAIDs. Gut 1998, 43 (4), 506–511. https://doi.org/10.1136/gut.43.4.506.

(1003)   Bjarnason, I.; Takeuchi, K. Intestinal Permeability in the Pathogenesis of NSAID-Induced Enteropathy. J. Gastroenterol. 2009, 44 Suppl 19, 23–29. https://doi.org/10.1007/s00535-008-2266-6.

(1004)   Siopi, E.; Chevalier, G.; Katsimpardi, L.; Saha, S.; Bigot, M.; Moigneu, C.; Eberl, G.; Lledo, P.-M. Changes in Gut Microbiota by Chronic Stress Impair the Efficacy of Fluoxetine. Cell Rep. 2020, 30 (11), 3682-3690.e6. https://doi.org/10.1016/j.celrep.2020.02.099.

(1005)   Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillère, R.; Hannani, D.; Enot, D. P.; Pfirschke, C.; Engblom, C.; Pittet, M. J.; Schlitzer, A.; Ginhoux, F.; Apetoh, L.; Chachaty, E.; Woerther, P.-L.; Eberl, G.; Bérard, M.; Ecobichon, C.; Clermont, D.; Bizet, C.; Gaboriau-Routhiau, V.; Cerf-Bensussan, N.; Opolon, P.; Yessaad, N.; Vivier, E.; Ryffel, B.; Elson, C. O.; Doré, J.; Kroemer, G.; Lepage, P.; Boneca, I. G.; Ghiringhelli, F.; Zitvogel, L. The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science 2013, 342 (6161), 971–976. https://doi.org/10.1126/science.1240537.

(1006)   Alexander, J. L.; Wilson, I. D.; Teare, J.; Marchesi, J. R.; Nicholson, J. K.; Kinross, J. M. Gut Microbiota Modulation of Chemotherapy Efficacy and Toxicity. Nat. Rev. Gastroenterol. Hepatol. 2017, 14 (6), 356–365. https://doi.org/10.1038/nrgastro.2017.20.

(1007)   Routy, B. and col. Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science 2018, 359 (6371), 91–97. https://doi.org/10.1126/science.aan3706.

(1008)   Gopalakrishnan, V. and col. Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients. Science 2018, 359 (6371), 97–103. https://doi.org/10.1126/science.aan4236.

(1009)   Zimmermann, M.; Zimmermann-Kogadeeva, M.; Wegmann, R.; Goodman, A. L. Mapping Human Microbiome Drug Metabolism by Gut Bacteria and Their Genes. Nature 2019, 570 (7762), 462–467. https://doi.org/10.1038/s41586-019-1291-3.

(1010)   Zimmermann, M.; Zimmermann-Kogadeeva, M.; Wegmann, R.; Goodman, A. L. Separating Host and Microbiome Contributions to Drug Pharmacokinetics and Toxicity. Science 2019, 363 (6427), eaat9931. https://doi.org/10.1126/science.aat9931.

(1011)   Ferrier, L.; Bérard, F.; Debrauwer, L.; Chabo, C.; Langella, P.; Buéno, L.; Fioramonti, J. Impairment of the Intestinal Barrier by Ethanol Involves Enteric Microflora and Mast Cell Activation in Rodents. Am. J. Pathol. 2006, 168 (4), 1148–1154. https://doi.org/10.2353/ajpath.2006.050617.

(1012)   Elamin, E. E.; Masclee, A. A.; Jonkers, D. M. Chapter 14 – Effects of Acetaldehyde on Intestinal Barrier Function. In Molecular Aspects of Alcohol and Nutrition; Patel, V. B., Ed.; Academic Press: San Diego, 2016; pp 171–186. https://doi.org/10.1016/B978-0-12-800773-0.00014-8.

(1013)   Bjørkhaug, S. T.; Aanes, H.; Neupane, S. P.; Bramness, J. G.; Malvik, S.; Henriksen, C.; Skar, V.; Medhus, A. W.; Valeur, J. Characterization of Gut Microbiota Composition and Functions in Patients with Chronic Alcohol Overconsumption. Gut Microbes 2019, 10 (6), 663–675. https://doi.org/10.1080/19490976.2019.1580097.

(1014)   Engen, P. A.; Green, S. J.; Voigt, R. M.; Forsyth, C. B.; Keshavarzian, A. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota. Alcohol Res. Curr. Rev. 2015, 37 (2), 223–236.

(1015)   Wang, Y.; Tong, J.; Chang, B.; Wang, B.; Zhang, D.; Wang, B. Effects of Alcohol on Intestinal Epithelial Barrier Permeability and Expression of Tight Junction-Associated Proteins. Mol. Med. Rep. 2014, 9 (6), 2352–2356. https://doi.org/10.3892/mmr.2014.2126.

(1016)   Leclercq, S.; Cani, P. D.; Neyrinck, A. M.; Stärkel, P.; Jamar, F.; Mikolajczak, M.; Delzenne, N. M.; de Timary, P. Role of Intestinal Permeability and Inflammation in the Biological and Behavioral Control of Alcohol-Dependent Subjects. Brain. Behav. Immun. 2012, 26 (6), 911–918. https://doi.org/10.1016/j.bbi.2012.04.001.

(1017)   Leclercq, S.; de Timary, P.; Delzenne, N. M.; Stärkel, P. The Link between Inflammation, Bugs, the Intestine and the Brain in Alcohol Dependence. Transl. Psychiatry 2017, 7 (2), e1048. https://doi.org/10.1038/tp.2017.15.

(1018)   Leclercq, S.; Matamoros, S.; Cani, P. D.; Neyrinck, A. M.; Jamar, F.; Stärkel, P.; Windey, K.; Tremaroli, V.; Bäckhed, F.; Verbeke, K.; de Timary, P.; Delzenne, N. M. Intestinal Permeability, Gut-Bacterial Dysbiosis, and Behavioral Markers of Alcohol-Dependence Severity. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (42), E4485-4493. https://doi.org/10.1073/pnas.1415174111.

(1019)   Temko, J. E.; Bouhlal, S.; Farokhnia, M.; Lee, M. R.; Cryan, J. F.; Leggio, L. The Microbiota, the Gut and the Brain in Eating and Alcohol Use Disorders: A “Ménage à Trois”? Alcohol Alcohol. Oxf. Oxfs. 2017, 52 (4), 403–413. https://doi.org/10.1093/alcalc/agx024.

(1020)   Tsiaoussis, J.; Antoniou, M. N.; Koliarakis, I.; Mesnage, R.; Vardavas, C. I.; Izotov, B. N.; Psaroulaki, A.; Tsatsakis, A. Effects of Single and Combined Toxic Exposures on the Gut Microbiome: Current Knowledge and Future Directions. Toxicol. Lett. 2019, 312, 72–97. https://doi.org/10.1016/j.toxlet.2019.04.014.

(1021)   Ali, S.; Rytting, E. Influences of Nanomaterials on the Barrier Function of Epithelial Cells. Adv. Exp. Med. Biol. 2014, 811, 45–54. https://doi.org/10.1007/978-94-017-8739-0_3.

(1022)   Hu, J.; Raikhel, V.; Gopalakrishnan, K.; Fernandez-Hernandez, H.; Lambertini, L.; Manservisi, F.; Falcioni, L.; Bua, L.; Belpoggi, F.; L Teitelbaum, S.; Chen, J. Effect of Postnatal Low-Dose Exposure to Environmental Chemicals on the Gut Microbiome in a Rodent Model. Microbiome 2016, 4 (1), 26. https://doi.org/10.1186/s40168-016-0173-2.

(1023)   Reddivari, L.; Veeramachaneni, D. N. R.; Walters, W. A.; Lozupone, C.; Palmer, J.; Hewage, M. K. K.; Bhatnagar, R.; Amir, A.; Kennett, M. J.; Knight, R.; Vanamala, J. K. P. Perinatal Bisphenol A Exposure Induces Chronic Inflammation in Rabbit Offspring via Modulation of Gut Bacteria and Their Metabolites. mSystems 2017, 2 (5). https://doi.org/10.1128/mSystems.00093-17.

(1024)   Petriello, M. C.; Hoffman, J. B.; Vsevolozhskaya, O.; Morris, A. J.; Hennig, B. Dioxin-like PCB 126 Increases Intestinal Inflammation and Disrupts Gut Microbiota and Metabolic Homeostasis. Environ. Pollut. Barking Essex 1987 2018, 242 (Pt A), 1022–1032. https://doi.org/10.1016/j.envpol.2018.07.039.

(1025)   Fackelmann, G.; Sommer, S. Microplastics and the Gut Microbiome: How Chronically Exposed Species May Suffer from Gut Dysbiosis. Mar. Pollut. Bull. 2019, 143, 193–203. https://doi.org/10.1016/j.marpolbul.2019.04.030.

(1026)   Kittle, R. P.; McDermid, K. J.; Muehlstein, L.; Balazs, G. H. Effects of Glyphosate Herbicide on the Gastrointestinal Microflora of Hawaiian Green Turtles (Chelonia Mydas) Linnaeus. Mar. Pollut. Bull. 2018, 127, 170–174. https://doi.org/10.1016/j.marpolbul.2017.11.030.

(1027)   Claus, S. P.; Guillou, H.; Ellero-Simatos, S. The Gut Microbiota: A Major Player in the Toxicity of Environmental Pollutants? NPJ Biofilms Microbiomes 2016, 2, 16003. https://doi.org/10.1038/npjbiofilms.2016.3.

(1028)   Yuan, X.; Pan, Z.; Jin, C.; Ni, Y.; Fu, Z.; Jin, Y. Gut Microbiota: An Underestimated and Unintended Recipient for Pesticide-Induced Toxicity. Chemosphere 2019, 227, 425–434. https://doi.org/10.1016/j.chemosphere.2019.04.088.

(1029)   Groh, K. J.; Geueke, B.; Muncke, J. Food Contact Materials and Gut Health: Implications for Toxicity Assessment and Relevance of High Molecular Weight Migrants. Food Chem. Toxicol. 2017, 109 (Pt 1), 1–18. https://doi.org/10.1016/j.fct.2017.08.023.

(1030)   Gillois, K.; Lévêque, M.; Théodorou, V.; Robert, H.; Mercier-Bonin, M. Mucus: An Underestimated Gut Target for Environmental Pollutants and Food Additives. Microorganisms 2018, 6 (2). https://doi.org/10.3390/microorganisms6020053.

(1031)   Csáki, K. F. Synthetic Surfactant Food Additives Can Cause Intestinal Barrier Dysfunction. Med. Hypotheses 2011, 76 (5), 676–681. https://doi.org/10.1016/j.mehy.2011.01.030.

(1032)   Chassaing, B.; Koren, O.; Goodrich, J. K.; Poole, A. C.; Srinivasan, S.; Ley, R. E.; Gewirtz, A. T. Dietary Emulsifiers Impact the Mouse Gut Microbiota Promoting Colitis and Metabolic Syndrome. Nature 2015, 519 (7541), 92–96. https://doi.org/10.1038/nature14232.

(1033)   Chassaing, B.; Van de Wiele, T.; De Bodt, J.; Marzorati, M.; Gewirtz, A. T. Dietary Emulsifiers Directly Alter Human Microbiota Composition and Gene Expression Ex Vivo Potentiating Intestinal Inflammation. Gut 2017, 66 (8), 1414–1427. https://doi.org/10.1136/gutjnl-2016-313099.

(1034)   Naimi, S.; Viennois, E.; Gewirtz, A. T.; Chassaing, B. Direct Impact of Commonly Used Dietary Emulsifiers on Human Gut Microbiota. Microbiome 2021, 9 (1), 66. https://doi.org/10.1186/s40168-020-00996-6.

(1035)   Heiman, M. L.; Greenway, F. L. A Healthy Gastrointestinal Microbiome Is Dependent on Dietary Diversity. Mol. Metab. 2016, 5 (5), 317–320. https://doi.org/10.1016/j.molmet.2016.02.005.

(1036)   Singh, R. K.; Chang, H.-W.; Yan, D.; Lee, K. M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T. H.; Bhutani, T.; Liao, W. Influence of Diet on the Gut Microbiome and Implications for Human Health. J. Transl. Med. 2017, 15 (1), 73. https://doi.org/10.1186/s12967-017-1175-y.

(1037)   So, D.; Whelan, K.; Rossi, M.; Morrison, M.; Holtmann, G.; Kelly, J. T.; Shanahan, E. R.; Staudacher, H. M.; Campbell, K. L. Dietary Fiber Intervention on Gut Microbiota Composition in Healthy Adults: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2018, 107 (6), 965–983. https://doi.org/10.1093/ajcn/nqy041.

(1038)   Pandey, Kavita. R.; Naik, Suresh. R.; Vakil, Babu. V. Probiotics, Prebiotics and Synbiotics- a Review. J. Food Sci. Technol. 2015, 52 (12), 7577–7587. https://doi.org/10.1007/s13197-015-1921-1.

(1039)   Martínez, I.; Lattimer, J. M.; Hubach, K. L.; Case, J. A.; Yang, J.; Weber, C. G.; Louk, J. A.; Rose, D. J.; Kyureghian, G.; Peterson, D. A.; Haub, M. D.; Walter, J. Gut Microbiome Composition Is Linked to Whole Grain-Induced Immunological Improvements. ISME J. 2013, 7 (2), 269–280. https://doi.org/10.1038/ismej.2012.104.

(1040)   Kim, M.-S.; Hwang, S.-S.; Park, E.-J.; Bae, J.-W. Strict Vegetarian Diet Improves the Risk Factors Associated with Metabolic Diseases by Modulating Gut Microbiota and Reducing Intestinal Inflammation. Environ. Microbiol. Rep. 2013, 5 (5), 765–775. https://doi.org/10.1111/1758-2229.12079.

(1041)   Kovatcheva-Datchary, P.; Nilsson, A.; Akrami, R.; Lee, Y. S.; De Vadder, F.; Arora, T.; Hallen, A.; Martens, E.; Björck, I.; Bäckhed, F. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab. 2015, 22 (6), 971–982. https://doi.org/10.1016/j.cmet.2015.10.001.

(1042)   Zinöcker, M. K.; Lindseth, I. A. The Western Diet-Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients 2018, 10 (3). https://doi.org/10.3390/nu10030365.

(1043)   Gentile, C. L.; Weir, T. L. The Gut Microbiota at the Intersection of Diet and Human Health. Science 2018, 362 (6416), 776–780. https://doi.org/10.1126/science.aau5812.

(1044)   McDonald, D. and col. American Gut: An Open Platform for Citizen Science Microbiome Research. mSystems 2018, 3 (3). https://doi.org/10.1128/mSystems.00031-18.

(1045)   Johnson, A. J.; Vangay, P.; Al-Ghalith, G. A.; Hillmann, B. M.; Ward, T. L.; Shields-Cutler, R. R.; Kim, A. D.; Shmagel, A. K.; Syed, A. N.; Personalized Microbiome Class Students; Walter, J.; Menon, R.; Koecher, K.; Knights, D. Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans. Cell Host Microbe 2019, 25 (6), 789-802.e5. https://doi.org/10.1016/j.chom.2019.05.005.

(1046)   Yatsunenko, T.; Rey, F. E.; Manary, M. J.; Trehan, I.; Dominguez-Bello, M. G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R. N.; Anokhin, A. P.; Heath, A. C.; Warner, B.; Reeder, J.; Kuczynski, J.; Caporaso, J. G.; Lozupone, C. A.; Lauber, C.; Clemente, J. C.; Knights, D.; Knight, R.; Gordon, J. I. Human Gut Microbiome Viewed across Age and Geography. Nature 2012, 486 (7402), 222–227. https://doi.org/10.1038/nature11053.

(1047)   Smits, S. A.; Leach, J.; Sonnenburg, E. D.; Gonzalez, C. G.; Lichtman, J. S.; Reid, G.; Knight, R.; Manjurano, A.; Changalucha, J.; Elias, J. E.; Dominguez-Bello, M. G.; Sonnenburg, J. L. Seasonal Cycling in the Gut Microbiome of the Hadza Hunter-Gatherers of Tanzania. Science 2017, 357 (6353), 802–806. https://doi.org/10.1126/science.aan4834.

(1048)   David, L. A.; Maurice, C. F.; Carmody, R. N.; Gootenberg, D. B.; Button, J. E.; Wolfe, B. E.; Ling, A. V.; Devlin, A. S.; Varma, Y.; Fischbach, M. A.; Biddinger, S. B.; Dutton, R. J.; Turnbaugh, P. J. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature 2014, 505 (7484), 559–563. https://doi.org/10.1038/nature12820.

(1049)   Sonnenburg, J. L.; Bäckhed, F. Diet-Microbiota Interactions as Moderators of Human Metabolism. Nature 2016, 535 (7610), 56–64. https://doi.org/10.1038/nature18846.

(1050)   David, L. A.; Materna, A. C.; Friedman, J.; Campos-Baptista, M. I.; Blackburn, M. C.; Perrotta, A.; Erdman, S. E.; Alm, E. J. Host Lifestyle Affects Human Microbiota on Daily Timescales. Genome Biol. 2014, 15 (7), R89. https://doi.org/10.1186/gb-2014-15-7-r89.

(1051)   Smits, S. A.; Leach, J.; Sonnenburg, E. D.; Gonzalez, C. G.; Lichtman, J. S.; Reid, G.; Knight, R.; Manjurano, A.; Changalucha, J.; Elias, J. E.; Dominguez-Bello, M. G.; Sonnenburg, J. L. Seasonal Cycling in the Gut Microbiome of the Hadza Hunter-Gatherers of Tanzania. Science 2017, 357 (6353), 802–806. https://doi.org/10.1126/science.aan4834.

(1052)   Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F. J.; Queipo-Ortuño, M. I. Benefits of Polyphenols on Gut Microbiota and Implications in Human Health. J. Nutr. Biochem. 2013, 24 (8), 1415–1422. https://doi.org/10.1016/j.jnutbio.2013.05.001.

(1053)   Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of Dietary Compounds, Especially Polyphenols, with the Intestinal Microbiota: A Review. Eur. J. Nutr. 2015, 54 (3), 325–341. https://doi.org/10.1007/s00394-015-0852-y.

(1054)   Suzuki, T.; Hara, H. Quercetin Enhances Intestinal Barrier Function through the Assembly of Zonula [Corrected] Occludens-2, Occludin, and Claudin-1 and the Expression of Claudin-4 in Caco-2 Cells. J. Nutr. 2009, 139 (5), 965–974. https://doi.org/10.3945/jn.108.100867.

(1055)   Bernardi, S.; Del Bo’, C.; Marino, M.; Gargari, G.; Cherubini, A.; Andrés-Lacueva, C.; Hidalgo-Liberona, N.; Peron, G.; González-Dominguez, R.; Kroon, P.; Kirkup, B.; Porrini, M.; Guglielmetti, S.; Riso, P. Polyphenols and Intestinal Permeability: Rationale and Future Perspectives. J. Agric. Food Chem. 2020, 68 (7), 1816–1829. https://doi.org/10.1021/acs.jafc.9b02283.

(1056)   Jaquet, M.; Rochat, I.; Moulin, J.; Cavin, C.; Bibiloni, R. Impact of Coffee Consumption on the Gut Microbiota: A Human Volunteer Study. Int. J. Food Microbiol. 2009, 130 (2), 117–121. https://doi.org/10.1016/j.ijfoodmicro.2009.01.011.

(1057)   Vendrame, S.; Guglielmetti, S.; Riso, P.; Arioli, S.; Klimis-Zacas, D.; Porrini, M. Six-Week Consumption of a Wild Blueberry Powder Drink Increases Bifidobacteria in the Human Gut. J. Agric. Food Chem. 2011, 59 (24), 12815–12820. https://doi.org/10.1021/jf2028686.

(1058)   Tzounis, X.; Rodriguez-Mateos, A.; Vulevic, J.; Gibson, G. R.; Kwik-Uribe, C.; Spencer, J. P. E. Prebiotic Evaluation of Cocoa-Derived Flavanols in Healthy Humans by Using a Randomized, Controlled, Double-Blind, Crossover Intervention Study. Am. J. Clin. Nutr. 2011, 93 (1), 62–72. https://doi.org/10.3945/ajcn.110.000075.

(1059)   Cueva, C.; Gil-Sánchez, I.; Ayuda-Durán, B.; González-Manzano, S.; González-Paramás, A. M.; Santos-Buelga, C.; Bartolomé, B.; Moreno-Arribas, M. V. An Integrated View of the Effects of Wine Polyphenols and Their Relevant Metabolites on Gut and Host Health. Mol. Basel Switz. 2017, 22 (1). https://doi.org/10.3390/molecules22010099.

(1060)   Bamberger, C.; Rossmeier, A.; Lechner, K.; Wu, L.; Waldmann, E.; Fischer, S.; Stark, R. G.; Altenhofer, J.; Henze, K.; Parhofer, K. G. A Walnut-Enriched Diet Affects Gut Microbiome in Healthy Caucasian Subjects: A Randomized, Controlled Trial. Nutrients 2018, 10 (2). https://doi.org/10.3390/nu10020244.

(1061)   Liu, Y.-C.; Li, X.-Y.; Shen, L. Modulation Effect of Tea Consumption on Gut Microbiota. Appl. Microbiol. Biotechnol. 2020, 104 (3), 981–987. https://doi.org/10.1007/s00253-019-10306-2.

(1062)   Haro, C.; García-Carpintero, S.; Rangel-Zúñiga, O. A.; Alcalá-Díaz, J. F.; Landa, B. B.; Clemente, J. C.; Pérez-Martínez, P.; López-Miranda, J.; Pérez-Jiménez, F.; Camargo, A. Consumption of Two Healthy Dietary Patterns Restored Microbiota Dysbiosis in Obese Patients with Metabolic Dysfunction. Mol. Nutr. Food Res. 2017, 61 (12). https://doi.org/10.1002/mnfr.201700300.

(1063)   Garcia-Mantrana, I.; Selma-Royo, M.; Alcantara, C.; Collado, M. C. Shifts on Gut Microbiota Associated to Mediterranean Diet Adherence and Specific Dietary Intakes on General Adult Population. Front. Microbiol. 2018, 9, 890. https://doi.org/10.3389/fmicb.2018.00890.

(1064)   Zhang, C.; Derrien, M.; Levenez, F.; Brazeilles, R.; Ballal, S. A.; Kim, J.; Degivry, M.-C.; Quéré, G.; Garault, P.; van Hylckama Vlieg, J. E. T.; Garrett, W. S.; Doré, J.; Veiga, P. Ecological Robustness of the Gut Microbiota in Response to Ingestion of Transient Food-Borne Microbes. ISME J. 2016, 10 (9), 2235–2245. https://doi.org/10.1038/ismej.2016.13.

(1065)   Arroyo-López, F. N.; Romero-Gil, V.; Bautista-Gallego, J.; Rodríguez-Gómez, F.; Jiménez-Díaz, R.; García-García, P.; Querol, A.; Garrido-Fernández, A. Potential Benefits of the Application of Yeast Starters in Table Olive Processing. Front. Microbiol. 2012, 3. https://doi.org/10.3389/fmicb.2012.00161.

(1066)   Nuobariene, L.; Cizeikiene, D.; Gradzeviciute, E.; Hansen, Å. S.; Rasmussen, S. K.; Juodeikiene, G.; Vogensen, F. K. Phytase-Active Lactic Acid Bacteria from Sourdoughs: Isolation and Identification. LWT – Food Sci. Technol. 2015, 63 (1), 766–772. https://doi.org/10.1016/j.lwt.2015.03.018.

(1067)   Saubade, F.; Hemery, Y. M.; Guyot, J.-P.; Humblot, C. Lactic Acid Fermentation as a Tool for Increasing the Folate Content of Foods. Crit. Rev. Food Sci. Nutr. 2017, 57 (18), 3894–3910. https://doi.org/10.1080/10408398.2016.1192986.

(1068)   Melini, F.; Melini, V.; Luziatelli, F.; Ficca, A. G.; Ruzzi, M. Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review. Nutrients 2019, 11 (5). https://doi.org/10.3390/nu11051189.

(1069)   Zhang, Y.; Skaar, I.; Sulyok, M.; Liu, X.; Rao, M.; Taylor, J. W. The Microbiome and Metabolites in Fermented Pu-Erh Tea as Revealed by High-Throughput Sequencing and Quantitative Multiplex Metabolite Analysis. PloS One 2016, 11 (6), e0157847. https://doi.org/10.1371/journal.pone.0157847.

(1070)   Huang, F.; Zheng, X.; Ma, X.; Jiang, R.; Zhou, W.; Zhou, S.; Zhang, Y.; Lei, S.; Wang, S.; Kuang, J.; Han, X.; Wei, M.; You, Y.; Li, M.; Li, Y.; Liang, D.; Liu, J.; Chen, T.; Yan, C.; Wei, R.; Rajani, C.; Shen, C.; Xie, G.; Bian, Z.; Li, H.; Zhao, A.; Jia, W. Theabrownin from Pu-Erh Tea Attenuates Hypercholesterolemia via Modulation of Gut Microbiota and Bile Acid Metabolism. Nat. Commun. 2019, 10 (1), 4971. https://doi.org/10.1038/s41467-019-12896-x.

(1071)   Gibson, P. R. The Evidence Base for Efficacy of the Low FODMAP Diet in Irritable Bowel Syndrome: Is It Ready for Prime Time as a First-Line Therapy? J. Gastroenterol. Hepatol. 2017, 32 Suppl 1, 32–35. https://doi.org/10.1111/jgh.13693.

(1072)   Hill, P.; Muir, J. G.; Gibson, P. R. Controversies and Recent Developments of the Low-FODMAP Diet. Gastroenterol. Hepatol. 2017, 13 (1), 36–45.

(1073)   Reddel, S.; Putignani, L.; Del Chierico, F. The Impact of Low-FODMAPs, Gluten-Free, and Ketogenic Diets on Gut Microbiota Modulation in Pathological Conditions. Nutrients 2019, 11 (2). https://doi.org/10.3390/nu11020373.

(1074)   Cotillard, A.; Kennedy, S. P.; Kong, L. C.; Prifti, E.; Pons, N.; Le Chatelier, E.; Almeida, M.; Quinquis, B.; Levenez, F.; Galleron, N.; Gougis, S.; Rizkalla, S.; Batto, J.-M.; Renault, P.; ANR MicroObes consortium; Doré, J.; Zucker, J.-D.; Clément, K.; Ehrlich, S. D. Dietary Intervention Impact on Gut Microbial Gene Richness. Nature 2013, 500 (7464), 585–588. https://doi.org/10.1038/nature12480.

(1075)   Jantchou, P.; Morois, S.; Clavel-Chapelon, F.; Boutron-Ruault, M.-C.; Carbonnel, F. Animal Protein Intake and Risk of Inflammatory Bowel Disease: The E3N Prospective Study. Am. J. Gastroenterol. 2010, 105 (10), 2195–2201. https://doi.org/10.1038/ajg.2010.192.

(1076)   Linden, D. R. Hydrogen Sulfide Signaling in the Gastrointestinal Tract. Antioxid. Redox Signal. 2014, 20 (5), 818–830. https://doi.org/10.1089/ars.2013.5312.

(1077)   Franco-de-Moraes, A. C.; de Almeida-Pititto, B.; da Rocha Fernandes, G.; Gomes, E. P.; da Costa Pereira, A.; Ferreira, S. R. G. Worse Inflammatory Profile in Omnivores than in Vegetarians Associates with the Gut Microbiota Composition. Diabetol. Metab. Syndr. 2017, 9, 62. https://doi.org/10.1186/s13098-017-0261-x.

(1078)   Russell, W. R.; Gratz, S. W.; Duncan, S. H.; Holtrop, G.; Ince, J.; Scobbie, L.; Duncan, G.; Johnstone, A. M.; Lobley, G. E.; Wallace, R. J.; Duthie, G. G.; Flint, H. J. High-Protein, Reduced-Carbohydrate Weight-Loss Diets Promote Metabolite Profiles Likely to Be Detrimental to Colonic Health. Am. J. Clin. Nutr. 2011, 93 (5), 1062–1072. https://doi.org/10.3945/ajcn.110.002188.

(1079)   Machiels, K.; Joossens, M.; Sabino, J.; De Preter, V.; Arijs, I.; Eeckhaut, V.; Ballet, V.; Claes, K.; Van Immerseel, F.; Verbeke, K.; Ferrante, M.; Verhaegen, J.; Rutgeerts, P.; Vermeire, S. A Decrease of the Butyrate-Producing Species Roseburia Hominis and Faecalibacterium Prausnitzii Defines Dysbiosis in Patients with Ulcerative Colitis. Gut 2014, 63 (8), 1275–1283. https://doi.org/10.1136/gutjnl-2013-304833.

(1080)   Fang, S.; Suh, J. M.; Reilly, S. M.; Yu, E.; Osborn, O.; Lackey, D.; Yoshihara, E.; Perino, A.; Jacinto, S.; Lukasheva, Y.; Atkins, A. R.; Khvat, A.; Schnabl, B.; Yu, R. T.; Brenner, D. A.; Coulter, S.; Liddle, C.; Schoonjans, K.; Olefsky, J. M.; Saltiel, A. R.; Downes, M.; Evans, R. M. Intestinal FXR Agonism Promotes Adipose Tissue Browning and Reduces Obesity and Insulin Resistance. Nat. Med. 2015, 21 (2), 159–165. https://doi.org/10.1038/nm.3760.

(1081)   Wahlström, A.; Sayin, S. I.; Marschall, H.-U.; Bäckhed, F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016, 24 (1), 41–50. https://doi.org/10.1016/j.cmet.2016.05.005.

(1082)   Parséus, A.; Sommer, N.; Sommer, F.; Caesar, R.; Molinaro, A.; Ståhlman, M.; Greiner, T. U.; Perkins, R.; Bäckhed, F. Microbiota-Induced Obesity Requires Farnesoid X Receptor. Gut 2017, 66 (3), 429–437. https://doi.org/10.1136/gutjnl-2015-310283.

(1083)   An, C.; Kuda, T.; Yazaki, T.; Takahashi, H.; Kimura, B. Caecal Fermentation, Putrefaction and Microbiotas in Rats Fed Milk Casein, Soy Protein or Fish Meal. Appl. Microbiol. Biotechnol. 2013, 98. https://doi.org/10.1007/s00253-013-5271-5.

(1084)   Turnbaugh, P. J.; Ley, R. E.; Mahowald, M. A.; Magrini, V.; Mardis, E. R.; Gordon, J. I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature 2006, 444 (7122), 1027–1031. https://doi.org/10.1038/nature05414.

(1085)   Mitev, K.; Taleski, V. Association between the Gut Microbiota and Obesity. Open Access Maced. J. Med. Sci. 2019, 7 (12), 2050–2056. https://doi.org/10.3889/oamjms.2019.586.

(1086)   Chen, T.; Kim, C. Y.; Kaur, A.; Lamothe, L.; Shaikh, M.; Keshavarzian, A.; Hamaker, B. R. Dietary Fibre-Based SCFA Mixtures Promote Both Protection and Repair of Intestinal Epithelial Barrier Function in a Caco-2 Cell Model. Food Funct. 2017, 8 (3), 1166–1173. https://doi.org/10.1039/c6fo01532h.

(1087)   Camilleri, M.; Lyle, B. J.; Madsen, K. L.; Sonnenburg, J.; Verbeke, K.; Wu, G. D. Role for Diet in Normal Gut Barrier Function: Developing Guidance within the Framework of Food-Labeling Regulations. Am. J. Physiol. – Gastrointest. Liver Physiol. 2019, 317 (1), G17–G39. https://doi.org/10.1152/ajpgi.00063.2019.

(1088)   Bourassa, M. W.; Alim, I.; Bultman, S. J.; Ratan, R. R. Butyrate, Neuroepigenetics and the Gut Microbiome: Can a High Fiber Diet Improve Brain Health? Neurosci. Lett. 2016, 625, 56–63. https://doi.org/10.1016/j.neulet.2016.02.009.

(1089)   Frost, G.; Sleeth, M. L.; Sahuri-Arisoylu, M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir, M.; Zhang, S.; Carling, D.; Swann, J. R.; Gibson, G.; Viardot, A.; Morrison, D.; Louise Thomas, E.; Bell, J. D. The Short-Chain Fatty Acid Acetate Reduces Appetite via a Central Homeostatic Mechanism. Nat. Commun. 2014, 5, 3611. https://doi.org/10.1038/ncomms4611.

(1090)   Bienenstock, J.; Kunze, W.; Forsythe, P. Microbiota and the Gut-Brain Axis. Nutr. Rev. 2015, 73 Suppl 1, 28–31. https://doi.org/10.1093/nutrit/nuv019.

(1091)   De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell 2014, 156 (1–2), 84–96. https://doi.org/10.1016/j.cell.2013.12.016.

(1092)   Kim, C. H.; Park, J.; Kim, M. Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation. Immune Netw. 2014, 14 (6), 277–288. https://doi.org/10.4110/in.2014.14.6.277.

(1093)   Tang, C.; Ahmed, K.; Gille, A.; Lu, S.; Gröne, H.-J.; Tunaru, S.; Offermanns, S. Loss of FFA2 and FFA3 Increases Insulin Secretion and Improves Glucose Tolerance in Type 2 Diabetes. Nat. Med. 2015, 21 (2), 173–177. https://doi.org/10.1038/nm.3779.

(1094)   Grasset, E.; Puel, A.; Charpentier, J.; Collet, X.; Christensen, J. E.; Tercé, F.; Burcelin, R. A Specific Gut Microbiota Dysbiosis of Type 2 Diabetic Mice Induces GLP-1 Resistance through an Enteric NO-Dependent and Gut-Brain Axis Mechanism. Cell Metab. 2017, 25 (5), 1075-1090.e5. https://doi.org/10.1016/j.cmet.2017.04.013.

(1095)   Lee, C. J.; Sears, C. L.; Maruthur, N. Gut Microbiome and Its Role in Obesity and Insulin Resistance. Ann. N. Y. Acad. Sci. 2020, 1461 (1), 37–52. https://doi.org/10.1111/nyas.14107.

(1096)   Pluznick, J. L.; Protzko, R. J.; Gevorgyan, H.; Peterlin, Z.; Sipos, A.; Han, J.; Brunet, I.; Wan, L.-X.; Rey, F.; Wang, T.; Firestein, S. J.; Yanagisawa, M.; Gordon, J. I.; Eichmann, A.; Peti-Peterdi, J.; Caplan, M. J. Olfactory Receptor Responding to Gut Microbiota-Derived Signals Plays a Role in Renin Secretion and Blood Pressure Regulation. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (11), 4410–4415. https://doi.org/10.1073/pnas.1215927110.

(1097)   Miyamoto, J.; Kasubuchi, M.; Nakajima, A.; Irie, J.; Itoh, H.; Kimura, I. The Role of Short-Chain Fatty Acid on Blood Pressure Regulation. Curr. Opin. Nephrol. Hypertens. 2016, 25 (5), 379–383. https://doi.org/10.1097/MNH.0000000000000246.

(1098)   Bindels, L. B.; Porporato, P.; Dewulf, E. M.; Verrax, J.; Neyrinck, A. M.; Martin, J. C.; Scott, K. P.; Buc Calderon, P.; Feron, O.; Muccioli, G. G.; Sonveaux, P.; Cani, P. D.; Delzenne, N. M. Gut Microbiota-Derived Propionate Reduces Cancer Cell Proliferation in the Liver. Br. J. Cancer 2012, 107 (8), 1337–1344. https://doi.org/10.1038/bjc.2012.409.

(1099)   Sivaprakasam, S.; Gurav, A.; Paschall, A. V.; Coe, G. L.; Chaudhary, K.; Cai, Y.; Kolhe, R.; Martin, P.; Browning, D.; Huang, L.; Shi, H.; Sifuentes, H.; Vijay-Kumar, M.; Thompson, S. A.; Munn, D. H.; Mellor, A.; McGaha, T. L.; Shiao, P.; Cutler, C. W.; Liu, K.; Ganapathy, V.; Li, H.; Singh, N. An Essential Role of Ffar2 (Gpr43) in Dietary Fibre-Mediated Promotion of Healthy Composition of Gut Microbiota and Suppression of Intestinal Carcinogenesis. Oncogenesis 2016, 5 (6), e238. https://doi.org/10.1038/oncsis.2016.38.

(1100)   Turnbaugh, P. J.; Bäckhed, F.; Fulton, L.; Gordon, J. I. Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host Microbe 2008, 3 (4), 213–223. https://doi.org/10.1016/j.chom.2008.02.015.

(1101)   Lecomte, V.; Kaakoush, N. O.; Maloney, C. A.; Raipuria, M.; Huinao, K. D.; Mitchell, H. M.; Morris, M. J. Changes in Gut Microbiota in Rats Fed a High Fat Diet Correlate with Obesity-Associated Metabolic Parameters. PLoS ONE 2015, 10 (5). https://doi.org/10.1371/journal.pone.0126931.

(1102)   Delzenne, N. M.; Cani, P. D. Interaction between Obesity and the Gut Microbiota: Relevance in Nutrition. Annu. Rev. Nutr. 2011, 31, 15–31. https://doi.org/10.1146/annurev-nutr-072610-145146.

(1103)   Kübeck, R.; Bonet-Ripoll, C.; Hoffmann, C.; Walker, A.; Müller, V. M.; Schüppel, V. L.; Lagkouvardos, I.; Scholz, B.; Engel, K.-H.; Daniel, H.; Schmitt-Kopplin, P.; Haller, D.; Clavel, T.; Klingenspor, M. Dietary Fat and Gut Microbiota Interactions Determine Diet-Induced Obesity in Mice. Mol. Metab. 2016, 5 (12), 1162–1174. https://doi.org/10.1016/j.molmet.2016.10.001.

(1104)   Devkota, S.; Wang, Y.; Musch, M. W.; Leone, V.; Fehlner-Peach, H.; Nadimpalli, A.; Antonopoulos, D. A.; Jabri, B.; Chang, E. B. Dietary-Fat-Induced Taurocholic Acid Promotes Pathobiont Expansion and Colitis in Il10-/- Mice. Nature 2012, 487 (7405), 104–108. https://doi.org/10.1038/nature11225.

(1105)   Caesar, R.; Tremaroli, V.; Kovatcheva-Datchary, P.; Cani, P. D.; Bäckhed, F. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab. 2015, 22 (4), 658–668. https://doi.org/10.1016/j.cmet.2015.07.026.

(1106)   Martinez-Guryn, K.; Hubert, N.; Frazier, K.; Urlass, S.; Musch, M. W.; Ojeda, P.; Pierre, J. F.; Miyoshi, J.; Sontag, T. J.; Cham, C. M.; Reardon, C. A.; Leone, V.; Chang, E. B. Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids. Cell Host Microbe 2018, 23 (4), 458-469.e5. https://doi.org/10.1016/j.chom.2018.03.011.

(1107)   Jakobsdottir, G.; Xu, J.; Molin, G.; Ahrné, S.; Nyman, M. High-Fat Diet Reduces the Formation of Butyrate, but Increases Succinate, Inflammation, Liver Fat and Cholesterol in Rats, While Dietary Fibre Counteracts These Effects. PloS One 2013, 8 (11), e80476. https://doi.org/10.1371/journal.pone.0080476.

(1108)   Zhang, Y.; Zhou, S.; Zhou, Y.; Yu, L.; Zhang, L.; Wang, Y. Altered Gut Microbiome Composition in Children with Refractory Epilepsy after Ketogenic Diet. Epilepsy Res. 2018, 145, 163–168. https://doi.org/10.1016/j.eplepsyres.2018.06.015.

(1109)   Hampton, T. Gut Microbes May Account for the Anti-Seizure Effects of the Ketogenic Diet. JAMA 2018, 320 (13), 1307. https://doi.org/10.1001/jama.2017.12865.

(1110)   Olson, C. A.; Vuong, H. E.; Yano, J. M.; Liang, Q. Y.; Nusbaum, D. J.; Hsiao, E. Y. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell 2018, 173 (7), 1728-1741.e13. https://doi.org/10.1016/j.cell.2018.04.027.

(1111)   Cabrera-Mulero, A.; Tinahones, A.; Bandera, B.; Moreno-Indias, I.; Macías-González, M.; Tinahones, F. J. Keto Microbiota: A Powerful Contributor to Host Disease Recovery. Rev. Endocr. Metab. Disord. 2019, 20 (4), 415–425. https://doi.org/10.1007/s11154-019-09518-8.

(1112)   Liu, Z.; Dai, X.; Zhang, H.; Shi, R.; Hui, Y.; Jin, X.; Zhang, W.; Wang, L.; Wang, Q.; Wang, D.; Wang, J.; Tan, X.; Ren, B.; Liu, X.; Zhao, T.; Wang, J.; Pan, J.; Yuan, T.; Chu, C.; Lan, L.; Yin, F.; Cadenas, E.; Shi, L.; Zhao, S.; Liu, X. Gut Microbiota Mediates Intermittent-Fasting Alleviation of Diabetes-Induced Cognitive Impairment. Nat. Commun. 2020, 11. https://doi.org/10.1038/s41467-020-14676-4.

(1113)   Li, N.; Lewis, P.; Samuelson, D.; Liboni, K.; Neu, J. Glutamine Regulates Caco-2 Cell Tight Junction Proteins. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287 (3), G726-733. https://doi.org/10.1152/ajpgi.00012.2004.

(1114)   Wang, B.; Wu, Z.; Ji, Y.; Sun, K.; Dai, Z.; Wu, G. L-Glutamine Enhances Tight Junction Integrity by Activating CaMK Kinase 2-AMP-Activated Protein Kinase Signaling in Intestinal Porcine Epithelial Cells. J. Nutr. 2016, 146 (3), 501–508. https://doi.org/10.3945/jn.115.224857.

(1115)   Finamore, A.; Massimi, M.; Conti Devirgiliis, L.; Mengheri, E. Zinc Deficiency Induces Membrane Barrier Damage and Increases Neutrophil Transmigration in Caco-2 Cells. J. Nutr. 2008, 138 (9), 1664–1670. https://doi.org/10.1093/jn/138.9.1664.

(1116)   Reed, S.; Neuman, H.; Moscovich, S.; Glahn, R. P.; Koren, O.; Tako, E. Chronic Zinc Deficiency Alters Chick Gut Microbiota Composition and Function. Nutrients 2015, 7 (12), 9768–9784. https://doi.org/10.3390/nu7125497.

(1117)   Lopez, C. A.; Skaar, E. P. The Impact of Dietary Transition Metals on Host-Bacterial Interactions. Cell Host Microbe 2018, 23 (6), 737–748. https://doi.org/10.1016/j.chom.2018.05.008.

(1118)   Jaeggi, T.; Kortman, G. A. M.; Moretti, D.; Chassard, C.; Holding, P.; Dostal, A.; Boekhorst, J.; Timmerman, H. M.; Swinkels, D. W.; Tjalsma, H.; Njenga, J.; Mwangi, A.; Kvalsvig, J.; Lacroix, C.; Zimmermann, M. B. Iron Fortification Adversely Affects the Gut Microbiome, Increases Pathogen Abundance and Induces Intestinal Inflammation in Kenyan Infants. Gut 2015, 64 (5), 731–742. https://doi.org/10.1136/gutjnl-2014-307720.

(1119)   Li, Y.; Hansen, S. L.; Borst, L. B.; Spears, J. W.; Moeser, A. J. Dietary Iron Deficiency and Oversupplementation Increase Intestinal Permeability, Ion Transport, and Inflammation in Pigs. J. Nutr. 2016, 146 (8), 1499–1505. https://doi.org/10.3945/jn.116.231621.

(1120)   Ude, V. C.; Brown, D. M.; Viale, L.; Kanase, N.; Stone, V.; Johnston, H. J. Impact of Copper Oxide Nanomaterials on Differentiated and Undifferentiated Caco-2 Intestinal Epithelial Cells; Assessment of Cytotoxicity, Barrier Integrity, Cytokine Production and Nanomaterial Penetration. Part. Fibre Toxicol. 2017, 14 (1), 31. https://doi.org/10.1186/s12989-017-0211-7.

(1121)   Gibson, R. S. The Role of Diet- and Host-Related Factors in Nutrient Bioavailability and Thus in Nutrient-Based Dietary Requirement Estimates. Food Nutr. Bull. 2007, 28 (1 Suppl International), S77-100. https://doi.org/10.1177/15648265070281S108.

(1122)   Paganini, D.; Zimmermann, M. B. The Effects of Iron Fortification and Supplementation on the Gut Microbiome and Diarrhea in Infants and Children: A Review. Am. J. Clin. Nutr. 2017, 106 (Suppl 6), 1688S-1693S. https://doi.org/10.3945/ajcn.117.156067.

(1123)   Seyoum, Y.; Baye, K.; Humblot, C. Iron Homeostasis in Host and Gut Bacteria – a Complex Interrelationship. Gut Microbes 2021, 13 (1), 1–19. https://doi.org/10.1080/19490976.2021.1874855.

(1124)   Deschemin, J.-C.; Noordine, M.-L.; Remot, A.; Willemetz, A.; Afif, C.; Canonne-Hergaux, F.; Langella, P.; Karim, Z.; Vaulont, S.; Thomas, M.; Nicolas, G. The Microbiota Shifts the Iron Sensing of Intestinal Cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2016, 30 (1), 252–261. https://doi.org/10.1096/fj.15-276840.

(1125)   Li, Y.; Gao, Y.; Cui, T.; Yang, T.; Liu, L.; Li, T.; Chen, J. Retinoic Acid Facilitates Toll-Like Receptor 4 Expression to Improve Intestinal Barrier Function through Retinoic Acid Receptor Beta. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2017, 42 (4), 1390–1406. https://doi.org/10.1159/000479203.

(1126)   Tian, Y.; Nichols, R. G.; Cai, J.; Patterson, A. D.; Cantorna, M. T. Vitamin A Deficiency in Mice Alters Host and Gut Microbial Metabolism Leading to Altered Energy Homeostasis. J. Nutr. Biochem. 2018, 54, 28–34. https://doi.org/10.1016/j.jnutbio.2017.10.011.

(1127)   Cantorna, M. T.; Snyder, L.; Arora, J. Vitamin A and Vitamin D Regulate the Microbial Complexity, Barrier Function, and the Mucosal Immune Responses to Ensure Intestinal Homeostasis. Crit. Rev. Biochem. Mol. Biol. 2019, 54 (2), 184–192. https://doi.org/10.1080/10409238.2019.1611734.

(1128)   Magnúsdóttir, S.; Ravcheev, D.; de Crécy-Lagard, V.; Thiele, I. Systematic Genome Assessment of B-Vitamin Biosynthesis Suggests Co-Operation among Gut Microbes. Front. Genet. 2015, 6, 148. https://doi.org/10.3389/fgene.2015.00148.

(1129)   Sharma, V.; Rodionov, D. A.; Leyn, S. A.; Tran, D.; Iablokov, S. N.; Ding, H.; Peterson, D. A.; Osterman, A. L.; Peterson, S. N. B-Vitamin Sharing Promotes Stability of Gut Microbial Communities. Front. Microbiol. 2019, 10, 1485. https://doi.org/10.3389/fmicb.2019.01485.

(1130)   Harvard School of Public Health. Lectins. The Nutrition Source. https://www.hsph.harvard.edu/nutritionsource/anti-nutrients/lectins/ (accessed 2020-10-28).

(1131)   Gemede, H. F.; Ratta, N. Antinutritional Factors in Plant Foods: Potential Health Benefits and Adverse Effects. Int. J. Nutr. Food Sci. 2014, 3 (4), 284. https://doi.org/10.11648/j.ijnfs.20140304.18.

(1132)   Gee, J. M.; Wortley, G. M.; Johnson, I. T.; Price, K. R.; Rutten, A. A.; Houben, G. F.; Penninks, A. H. Effects of Saponins and Glycoalkaloids on the Permeability and Viability of Mammalian Intestinal Cells and on the Integrity of Tissue Preparations in Vitro. Toxicol. Vitro Int. J. Publ. Assoc. BIBRA 1996, 10 (2), 117–128. https://doi.org/10.1016/0887-2333(95)00113-1.

(1133)   Barceloux, D. G. Potatoes, Tomatoes, and Solanine Toxicity (Solanum Tuberosum L., Solanum Lycopersicum L.). Dis.–Mon. DM 2009, 55 (6), 391–402. https://doi.org/10.1016/j.disamonth.2009.03.009.

(1134)   Hashimoto, K.; Matsunaga, N.; Shimizu, M. Effect of Vegetable Extracts on the Transepithelial Permeability of the Human Intestinal Caco-2 Cell Monolayer. Biosci. Biotechnol. Biochem. 1994, 58 (7), 1345–1346. https://doi.org/10.1271/bbb.58.1345.

(1135)   Jensen-Jarolim, E.; Gajdzik, L.; Haberl, I.; Kraft, D.; Scheiner, O.; Graf, J. Hot Spices Influence Permeability of Human Intestinal Epithelial Monolayers. J. Nutr. 1998, 128 (3), 577–581. https://doi.org/10.1093/jn/128.3.577.

(1136)   Shiobara, T.; Usui, T.; Han, J.; Isoda, H.; Nagumo, Y. The Reversible Increase in Tight Junction Permeability Induced by Capsaicin Is Mediated via Cofilin-Actin Cytoskeletal Dynamics and Decreased Level of Occludin. PloS One 2013, 8 (11), e79954. https://doi.org/10.1371/journal.pone.0079954.

(1137)   Dominguez-Bello, M. G.; Costello, E. K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery Mode Shapes the Acquisition and Structure of the Initial Microbiota across Multiple Body Habitats in Newborns. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (26), 11971–11975. https://doi.org/10.1073/pnas.1002601107.

(1138)   Sevelsted, A.; Stokholm, J.; Bønnelykke, K.; Bisgaard, H. Cesarean Section and Chronic Immune Disorders. Pediatrics 2015, 135 (1), e92-98. https://doi.org/10.1542/peds.2014-0596.

(1139)   Tanaka, M.; Nakayama, J. Development of the Gut Microbiota in Infancy and Its Impact on Health in Later Life. Allergol. Int. Off. J. Jpn. Soc. Allergol. 2017, 66 (4), 515–522. https://doi.org/10.1016/j.alit.2017.07.010.

(1140)   Jašarević, E.; Bale, T. L. Prenatal and Postnatal Contributions of the Maternal Microbiome on Offspring Programming. Front. Neuroendocrinol. 2019, 55, 100797. https://doi.org/10.1016/j.yfrne.2019.100797.

(1141)   Kimura, I.; Miyamoto, J.; Ohue-Kitano, R.; Watanabe, K.; Yamada, T.; Onuki, M.; Aoki, R.; Isobe, Y.; Kashihara, D.; Inoue, D.; Inaba, A.; Takamura, Y.; Taira, S.; Kumaki, S.; Watanabe, M.; Ito, M.; Nakagawa, F.; Irie, J.; Kakuta, H.; Shinohara, M.; Iwatsuki, K.; Tsujimoto, G.; Ohno, H.; Arita, M.; Itoh, H.; Hase, K. Maternal Gut Microbiota in Pregnancy Influences Offspring Metabolic Phenotype in Mice. Science 2020, 367 (6481). https://doi.org/10.1126/science.aaw8429.

(1142)   Voreades, N.; Kozil, A.; Weir, T. L. Diet and the Development of the Human Intestinal Microbiome. Front. Microbiol. 2014, 5, 494. https://doi.org/10.3389/fmicb.2014.00494.

(1143)   Marques, T. M.; Wall, R.; Ross, R. P.; Fitzgerald, G. F.; Ryan, C. A.; Stanton, C. Programming Infant Gut Microbiota: Influence of Dietary and Environmental Factors. Curr. Opin. Biotechnol. 2010, 21 (2), 149–156. https://doi.org/10.1016/j.copbio.2010.03.020.

(1144)   Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G. A. D.; Gasbarrini, A.; Mele, M. C. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7 (1). https://doi.org/10.3390/microorganisms7010014.

(1145)   Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.; Abe, F.; Osawa, R. Age-Related Changes in Gut Microbiota Composition from Newborn to Centenarian: A Cross-Sectional Study. BMC Microbiol. 2016, 16. https://doi.org/10.1186/s12866-016-0708-5.

(1146)   Guigoz, Y.; Doré, J.; Schiffrin, E. J. The Inflammatory Status of Old Age Can Be Nurtured from the Intestinal Environment. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11 (1), 13–20. https://doi.org/10.1097/MCO.0b013e3282f2bfdf.

(1147)   Clarke, S. F.; Murphy, E. F.; O’Sullivan, O.; Lucey, A. J.; Humphreys, M.; Hogan, A.; Hayes, P.; O’Reilly, M.; Jeffery, I. B.; Wood-Martin, R.; Kerins, D. M.; Quigley, E.; Ross, R. P.; O’Toole, P. W.; Molloy, M. G.; Falvey, E.; Shanahan, F.; Cotter, P. D. Exercise and Associated Dietary Extremes Impact on Gut Microbial Diversity. Gut 2014, 63 (12), 1913–1920. https://doi.org/10.1136/gutjnl-2013-306541.

(1148)   Estaki, M.; Pither, J.; Baumeister, P.; Little, J. P.; Gill, S. K.; Ghosh, S.; Ahmadi-Vand, Z.; Marsden, K. R.; Gibson, D. L. Cardiorespiratory Fitness as a Predictor of Intestinal Microbial Diversity and Distinct Metagenomic Functions. Microbiome 2016, 4 (1), 42. https://doi.org/10.1186/s40168-016-0189-7.

(1149)   Monda, V.; Villano, I.; Messina, A.; Valenzano, A.; Esposito, T.; Moscatelli, F.; Viggiano, A.; Cibelli, G.; Chieffi, S.; Monda, M.; Messina, G. Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxid. Med. Cell. Longev. 2017, 2017, 3831972. https://doi.org/10.1155/2017/3831972.

(1150)   Barton, W.; Penney, N. C.; Cronin, O.; Garcia-Perez, I.; Molloy, M. G.; Holmes, E.; Shanahan, F.; Cotter, P. D.; O’Sullivan, O. The Microbiome of Professional Athletes Differs from That of More Sedentary Subjects in Composition and Particularly at the Functional Metabolic Level. Gut 2018, 67 (4), 625–633. https://doi.org/10.1136/gutjnl-2016-313627.

(1151)   Allen, J. M.; Mailing, L. J.; Cohrs, J.; Salmonson, C.; Fryer, J. D.; Nehra, V.; Hale, V. L.; Kashyap, P.; White, B. A.; Woods, J. A. Exercise Training-Induced Modification of the Gut Microbiota Persists after Microbiota Colonization and Attenuates the Response to Chemically-Induced Colitis in Gnotobiotic Mice. Gut Microbes 2018, 9 (2), 115–130. https://doi.org/10.1080/19490976.2017.1372077.

(1152)   Scheiman, J.; Luber, J. M.; Chavkin, T. A.; MacDonald, T.; Tung, A.; Pham, L.-D.; Wibowo, M. C.; Wurth, R. C.; Punthambaker, S.; Tierney, B. T.; Yang, Z.; Hattab, M. W.; Avila-Pacheco, J.; Clish, C. B.; Lessard, S.; Church, G. M.; Kostic, A. D. Meta-Omics Analysis of Elite Athletes Identifies a Performance-Enhancing Microbe That Functions via Lactate Metabolism. Nat. Med. 2019, 25 (7), 1104–1109. https://doi.org/10.1038/s41591-019-0485-4.

(1153)   Tebani, A.; Bekri, S. Paving the Way to Precision Nutrition Through Metabolomics. Front. Nutr. 2019, 6, 41. https://doi.org/10.3389/fnut.2019.00041.

(1154)   Lewis, S. J.; Heaton, K. W. Stool Form Scale as a Useful Guide to Intestinal Transit Time. Scand. J. Gastroenterol. 1997, 32 (9), 920–924. https://doi.org/10.3109/00365529709011203.

(1155)   Vandeputte, D.; Falony, G.; Vieira-Silva, S.; Wang, J.; Sailer, M.; Theis, S.; Verbeke, K.; Raes, J. Prebiotic Inulin-Type Fructans Induce Specific Changes in the Human Gut Microbiota. Gut 2017, 66 (11), 1968–1974. https://doi.org/10.1136/gutjnl-2016-313271.

(1156)   Vujkovic-Cvijin, I.; Sklar, J.; Jiang, L.; Natarajan, L.; Knight, R.; Belkaid, Y. Host Variables Confound Gut Microbiota Studies of Human Disease. Nature 2020, 1–7. https://doi.org/10.1038/s41586-020-2881-9.

(1157)   Falony, G.; Vieira-Silva, S.; Raes, J. Richness and Ecosystem Development across Faecal Snapshots of the Gut Microbiota. Nat. Microbiol. 2018, 3 (5), 526–528. https://doi.org/10.1038/s41564-018-0143-5.

(1158)   Hu, F. B. Dietary Pattern Analysis: A New Direction in Nutritional Epidemiology. Curr. Opin. Lipidol. 2002, 13 (1), 3–9. https://doi.org/10.1097/00041433-200202000-00002.

(1159)   Li, F.; Hullar, M. A. J.; Schwarz, Y.; Lampe, J. W. Human Gut Bacterial Communities Are Altered by Addition of Cruciferous Vegetables to a Controlled Fruit- and Vegetable-Free Diet. J. Nutr. 2009, 139 (9), 1685–1691. https://doi.org/10.3945/jn.109.108191.

(1160)   Holscher, H. D.; Guetterman, H. M.; Swanson, K. S.; An, R.; Matthan, N. R.; Lichtenstein, A. H.; Novotny, J. A.; Baer, D. J. Walnut Consumption Alters the Gastrointestinal Microbiota, Microbially Derived Secondary Bile Acids, and Health Markers in Healthy Adults: A Randomized Controlled Trial. J. Nutr. 2018, 148 (6), 861–867. https://doi.org/10.1093/jn/nxy004.

(1161)   Holscher, H. D.; Taylor, A. M.; Swanson, K. S.; Novotny, J. A.; Baer, D. J. Almond Consumption and Processing Affects the Composition of the Gastrointestinal Microbiota of Healthy Adult Men and Women: A Randomized Controlled Trial. Nutrients 2018, 10 (2). https://doi.org/10.3390/nu10020126.

(1162)   Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; Hercberg, S.; Lavalette, C.; Monteiro, C. A.; Julia, C.; Touvier, M. Consumption of Ultra-Processed Foods and Cancer Risk: Results from NutriNet-Santé Prospective Cohort. BMJ 2018, 360. https://doi.org/10.1136/bmj.k322.

(1163)   Li, S.; Tan, H.-Y.; Wang, N.; Zhang, Z.-J.; Lao, L.; Wong, C.-W.; Feng, Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015, 16 (11), 26087–26124. https://doi.org/10.3390/ijms161125942.

(1164)   La Merrill, M.; Emond, C.; Kim, M. J.; Antignac, J.-P.; Le Bizec, B.; Clément, K.; Birnbaum, L. S.; Barouki, R. Toxicological Function of Adipose Tissue: Focus on Persistent Organic Pollutants. Environ. Health Perspect. 2013, 121 (2), 162–169. https://doi.org/10.1289/ehp.1205485.

(1165)   Lee, Y.-M.; Jacobs, D. R.; Lee, D.-H. Persistent Organic Pollutants and Type 2 Diabetes: A Critical Review of Review Articles. Front. Endocrinol. 2018, 9, 712. https://doi.org/10.3389/fendo.2018.00712.

(1166)   Jackson, E.; Shoemaker, R.; Larian, N.; Cassis, L. Adipose Tissue as a Site of Toxin Accumulation. Compr. Physiol. 2017, 7 (4), 1085–1135. https://doi.org/10.1002/cphy.c160038.

(1167)   Cheikh Rouhou, M.; Karelis, A. D.; St-Pierre, D. H.; Lamontagne, L. Adverse Effects of Weight Loss: Are Persistent Organic Pollutants a Potential Culprit? Diabetes Metab. 2016, 42 (4), 215–223. https://doi.org/10.1016/j.diabet.2016.05.009.

(1168)   Morozova, T. V.; Mackay, T. F. C.; Anholt, R. R. H. Genetics and Genomics of Alcohol Sensitivity. Mol. Genet. Genomics 2014, 289 (3), 253–269. https://doi.org/10.1007/s00438-013-0808-y.

(1169)   Luo, H.-R.; Wu, G.-S.; Pakstis, A. J.; Tong, L.; Oota, H.; Kidd, K. K.; Zhang, Y.-P. Origin and Dispersal of Atypical Aldehyde Dehydrogenase ALDH2487Lys. Gene 2009, 435 (1–2), 96–103. https://doi.org/10.1016/j.gene.2008.12.021.

(1170)   Shin, M. J.; Cho, Y.; Davey Smith, G. Alcohol Consumption, Aldehyde Dehydrogenase 2 Gene Polymorphisms, and Cardiovascular Health in Korea. Yonsei Med. J. 2017, 58 (4), 689–696. https://doi.org/10.3349/ymj.2017.58.4.689.

(1171)   Lin, Y.-P.; Cheng, T.-J. Why Can’t Chinese Han Drink Alcohol? Hepatitis B Virus Infection and the Evolution of Acetaldehyde Dehydrogenase Deficiency. Med. Hypotheses 2002, 59 (2), 204–207. https://doi.org/10.1016/s0306-9877(02)00253-0.

(1172)   Carrigan, M. A.; Uryasev, O.; Frye, C. B.; Eckman, B. L.; Myers, C. R.; Hurley, T. D.; Benner, S. A. Hominids Adapted to Metabolize Ethanol Long before Human-Directed Fermentation. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (2), 458–463. https://doi.org/10.1073/pnas.1404167111.

(1173)   Crittenden, A. N.; Schnorr, S. L. Current Views on Hunter-Gatherer Nutrition and the Evolution of the Human Diet. Am. J. Phys. Anthropol. 2017, 162 Suppl 63, 84–109. https://doi.org/10.1002/ajpa.23148.

(1174)   Chang, C. J.; Tzeng, T.-F.; Liou, S.-S.; Chang, Y.-S.; Liu, I.-M. Kaempferol Regulates the Lipid-Profile in High-Fat Diet-Fed Rats through an Increase in Hepatic PPARα Levels. Planta Med. 2011, 77 (17), 1876–1882. https://doi.org/10.1055/s-0031-1279992.

(1175)   Van De Wier, B.; Koek, G. H.; Bast, A.; Haenen, G. R. M. M. The Potential of Flavonoids in the Treatment of Non-Alcoholic Fatty Liver Disease. Crit. Rev. Food Sci. Nutr. 2017, 57 (4), 834–855. https://doi.org/10.1080/10408398.2014.952399.

(1176)   Sato, K.; Gosho, M.; Yamamoto, T.; Kobayashi, Y.; Ishii, N.; Ohashi, T.; Nakade, Y.; Ito, K.; Fukuzawa, Y.; Yoneda, M. Vitamin E Has a Beneficial Effect on Nonalcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials. Nutr. Burbank Los Angel. Cty. Calif 2015, 31 (7–8), 923–930. https://doi.org/10.1016/j.nut.2014.11.018.

(1177)   Riedl, M. A.; Saxon, A.; Diaz-Sanchez, D. Oral Sulforaphane Increases Phase II Antioxidant Enzymes in the Human Upper Airway. Clin. Immunol. Orlando Fla 2009, 130 (3), 244–251. https://doi.org/10.1016/j.clim.2008.10.007.

(1178)   Wu, C.-C.; Chu, Y.-L.; Sheen, L.-Y. Allicin Modulates the Antioxidation and Detoxification Capabilities of Primary Rat Hepatocytes. J. Tradit. Complement. Med. 2012, 2 (4), 323–330.

(1179)   Rahimlou, M.; Yari, Z.; Hekmatdoost, A.; Alavian, S. M.; Keshavarz, S. A. Ginger Supplementation in Nonalcoholic Fatty Liver Disease: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. Hepat. Mon. 2016, 16 (1). https://doi.org/10.5812/hepatmon.34897.

(1180)   de Oliveira, J. R.; Camargo, S. E. A.; de Oliveira, L. D. Rosmarinus Officinalis L. (Rosemary) as Therapeutic and Prophylactic Agent. J. Biomed. Sci. 2019, 26. https://doi.org/10.1186/s12929-019-0499-8.

(1181)   Samra, Y. A.; Hamed, M. F.; El-Sheakh, A. R. Hepatoprotective Effect of Allicin against Acetaminophen-Induced Liver Injury: Role of Inflammasome Pathway, Apoptosis, and Liver Regeneration. J. Biochem. Mol. Toxicol. 2020, e22470. https://doi.org/10.1002/jbt.22470.

(1182)   Kretzschmar, M. Regulation of Hepatic Glutathione Metabolism and Its Role in Hepatotoxicity. Exp. Toxicol. Pathol. Off. J. Ges. Toxikol. Pathol. 1996, 48 (5), 439–446. https://doi.org/10.1016/S0940-2993(96)80054-6.

(1183)   Atkuri, K. R.; Mantovani, J. J.; Herzenberg, L. A.; Herzenberg, L. A. N-Acetylcysteine–a Safe Antidote for Cysteine/Glutathione Deficiency. Curr. Opin. Pharmacol. 2007, 7 (4), 355–359. https://doi.org/10.1016/j.coph.2007.04.005.

(1184)   Sekhar, R. V.; McKay, S. V.; Patel, S. G.; Guthikonda, A. P.; Reddy, V. T.; Balasubramanyam, A.; Jahoor, F. Glutathione Synthesis Is Diminished in Patients with Uncontrolled Diabetes and Restored by Dietary Supplementation with Cysteine and Glycine. Diabetes Care 2011, 34 (1), 162–167. https://doi.org/10.2337/dc10-1006.

(1185)   Rushworth, G. F.; Megson, I. L. Existing and Potential Therapeutic Uses for N-Acetylcysteine: The Need for Conversion to Intracellular Glutathione for Antioxidant Benefits. Pharmacol. Ther. 2014, 141 (2), 150–159. https://doi.org/10.1016/j.pharmthera.2013.09.006.

(1186)   de Andrade, K. Q.; Moura, F. A.; dos Santos, J. M.; de Araújo, O. R. P.; de Farias Santos, J. C.; Goulart, M. O. F. Oxidative Stress and Inflammation in Hepatic Diseases: Therapeutic Possibilities of N-Acetylcysteine. Int. J. Mol. Sci. 2015, 16 (12), 30269–30308. https://doi.org/10.3390/ijms161226225.

(1187)   McCarty, M. F.; O’Keefe, J. H.; DiNicolantonio, J. J. Dietary Glycine Is Rate-Limiting for Glutathione Synthesis and May Have Broad Potential for Health Protection. Ochsner J. 2018, 18 (1), 81–87.

(1188)   Colell, A.; García-Ruiz, C.; Morales, A.; Ballesta, A.; Ookhtens, M.; Rodés, J.; Kaplowitz, N.; Fernández-Checa, J. C. Transport of Reduced Glutathione in Hepatic Mitochondria and Mitoplasts from Ethanol-Treated Rats: Effect of Membrane Physical Properties and S-Adenosyl-L-Methionine. Hepatol. Baltim. Md 1997, 26 (3), 699–708. https://doi.org/10.1002/hep.510260323.

(1189)   Mato, J. M.; Lu, S. C. Role of S-Adenosyl-L-Methionine in Liver Health and Injury. Hepatol. Baltim. Md 2007, 45 (5), 1306–1312. https://doi.org/10.1002/hep.21650.

(1190)   Castro, M. C.; Villagarcía, H. G.; Massa, M. L.; Francini, F. Alpha-Lipoic Acid and Its Protective Role in Fructose Induced Endocrine-Metabolic Disturbances. Food Funct. 2019, 10 (1), 16–25. https://doi.org/10.1039/c8fo01856a.

(1191)   Munday, R.; Munday, C. M. Induction of Phase II Detoxification Enzymes in Rats by Plant-Derived Isothiocyanates: Comparison of Allyl Isothiocyanate with Sulforaphane and Related Compounds. J. Agric. Food Chem. 2004, 52 (7), 1867–1871. https://doi.org/10.1021/jf030549s.

(1192)   Ben Salem, M.; Affes, H.; Ksouda, K.; Dhouibi, R.; Sahnoun, Z.; Hammami, S.; Zeghal, K. M. Pharmacological Studies of Artichoke Leaf Extract and Their Health Benefits. Plant Foods Hum. Nutr. 2015, 70 (4), 441–453. https://doi.org/10.1007/s11130-015-0503-8.

(1193)   Abdull Razis, A. F.; Konsue, N.; Ioannides, C. Isothiocyanates and Xenobiotic Detoxification. Mol. Nutr. Food Res. 2018, 62 (18), e1700916. https://doi.org/10.1002/mnfr.201700916.

(1194)   Panahi, Y.; Kianpour, P.; Mohtashami, R.; Atkin, S. L.; Butler, A. E.; Jafari, R.; Badeli, R.; Sahebkar, A. Efficacy of Artichoke Leaf Extract in Non-Alcoholic Fatty Liver Disease: A Pilot Double-Blind Randomized Controlled Trial. Phytother. Res. PTR 2018, 32 (7), 1382–1387. https://doi.org/10.1002/ptr.6073.

(1195)   Rambaldi, A.; Jacobs, B. P.; Gluud, C. Milk Thistle for Alcoholic and/or Hepatitis B or C Virus Liver Diseases. Cochrane Database Syst. Rev. 2007, No. 4, CD003620. https://doi.org/10.1002/14651858.CD003620.pub3.

(1196)   Saller, R.; Brignoli, R.; Melzer, J.; Meier, R. An Updated Systematic Review with Meta-Analysis for the Clinical Evidence of Silymarin. Forsch. Komplementarmedizin 2006 2008, 15 (1), 9–20. https://doi.org/10.1159/000113648.

(1197)   El-Kamary, S. S.; Shardell, M. D.; Abdel-Hamid, M.; Ismail, S.; El-Ateek, M.; Metwally, M.; Mikhail, N.; Hashem, M.; Mousa, A.; Aboul-Fotouh, A.; El-Kassas, M.; Esmat, G.; Strickland, G. T. A Randomized Controlled Trial to Assess the Safety and Efficacy of Silymarin on Symptoms, Signs and Biomarkers of Acute Hepatitis. Phytomedicine Int. J. Phytother. Phytopharm. 2009, 16 (5), 391–400. https://doi.org/10.1016/j.phymed.2009.02.002.

(1198)   Federico, A.; Dallio, M.; Loguercio, C. Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years. Mol. Basel Switz. 2017, 22 (2). https://doi.org/10.3390/molecules22020191.

(1199)   Sivakumar, S.; Palsamy, P.; Subramanian, S. P. Attenuation of Oxidative Stress and Alteration of Hepatic Tissue Ultrastructure by D-Pinitol in Streptozotocin-Induced Diabetic Rats. Free Radic. Res. 2010, 44 (6), 668–678. https://doi.org/10.3109/10715761003733901.

(1200)   Rastogi, S.; Pandey, M. M.; Rawat, A. K. S. An Ethnomedicinal, Phytochemical and Pharmacological Profile of Desmodium Gangeticum (L.) DC. and Desmodium Adscendens (Sw.) DC. J. Ethnopharmacol. 2011, 136 (2), 283–296. https://doi.org/10.1016/j.jep.2011.04.031.

(1201)   Lee, E.; Lim, Y.; Kwon, S. W.; Kwon, O. Pinitol Consumption Improves Liver Health Status by Reducing Oxidative Stress and Fatty Acid Accumulation in Subjects with Non-Alcoholic Fatty Liver Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Nutr. Biochem. 2019, 68, 33–41. https://doi.org/10.1016/j.jnutbio.2019.03.006.

(1202)   Maughan, R. J.; Griffin, J. Caffeine Ingestion and Fluid Balance: A Review. J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. 2003, 16 (6), 411–420. https://doi.org/10.1046/j.1365-277x.2003.00477.x.

(1203)   Rogers, P. J.; Hohoff, C.; Heatherley, S. V.; Mullings, E. L.; Maxfield, P. J.; Evershed, R. P.; Deckert, J.; Nutt, D. J. Association of the Anxiogenic and Alerting Effects of Caffeine with ADORA2A and ADORA1 Polymorphisms and Habitual Level of Caffeine Consumption. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2010, 35 (9), 1973–1983. https://doi.org/10.1038/npp.2010.71.

(1204)   Mathis, A. Le rôle des cytochromes P450 dans les interactions médicamenteuses et environnementales rencontrées à l’officine. other, Université de lorraine, 2018, p 173.

(1205)   Priftis, A.; Stagos, D.; Konstantinopoulos, K.; Tsitsimpikou, C.; Spandidos, D. A.; Tsatsakis, A. M.; Tzatzarakis, M. N.; Kouretas, D. Comparison of Antioxidant Activity between Green and Roasted Coffee Beans Using Molecular Methods. Mol. Med. Rep. 2015, 12 (5), 7293–7302. https://doi.org/10.3892/mmr.2015.4377.

(1206)   Odžaković, B.; Džinić, N.; Kukrić, Z.; Grujić, S. Effect of Roasting Degree on the Antioxidant Activity of Different Arabica Coffee Quality Classes. Acta Sci. Pol. Technol. Aliment. 2016, 15 (4), 409–417. https://doi.org/10.17306/J.AFS.2016.4.39.

(1207)   del Castillo, M. D.; Ames, J. M.; Gordon, M. H. Effect of Roasting on the Antioxidant Activity of Coffee Brews. J. Agric. Food Chem. 2002, 50 (13), 3698–3703. https://doi.org/10.1021/jf011702q.

(1208)   Rodriguez-Mateos, A.; Vauzour, D.; Krueger, C. G.; Shanmuganayagam, D.; Reed, J.; Calani, L.; Mena, P.; Del Rio, D.; Crozier, A. Bioavailability, Bioactivity and Impact on Health of Dietary Flavonoids and Related Compounds: An Update. Arch. Toxicol. 2014, 88 (10), 1803–1853. https://doi.org/10.1007/s00204-014-1330-7.

(1209)   Stalmach, A.; Mullen, W.; Barron, D.; Uchida, K.; Yokota, T.; Cavin, C.; Steiling, H.; Williamson, G.; Crozier, A. Metabolite Profiling of Hydroxycinnamate Derivatives in Plasma and Urine after the Ingestion of Coffee by Humans: Identification of Biomarkers of Coffee Consumption. Drug Metab. Dispos. Biol. Fate Chem. 2009, 37 (8), 1749–1758. https://doi.org/10.1124/dmd.109.028019.

(1210)   van Dam, R. M.; Hu, F. B. Coffee Consumption and Risk of Type 2 Diabetes: A Systematic Review. JAMA 2005, 294 (1), 97–104. https://doi.org/10.1001/jama.294.1.97.

(1211)   Lim, Y.; Park, Y.; Choi, S. K.; Ahn, S.; Ohn, J. H. The Effect of Coffee Consumption on the Prevalence of Diabetes Mellitus: The 2012–2016 Korea National Health and Nutrition Examination Survey. Nutrients 2019, 11 (10). https://doi.org/10.3390/nu11102377.

(1212)   Yu, X.; Bao, Z.; Zou, J.; Dong, J. Coffee Consumption and Risk of Cancers: A Meta-Analysis of Cohort Studies. BMC Cancer 2011, 11, 96. https://doi.org/10.1186/1471-2407-11-96.

(1213)   Panza, F.; Solfrizzi, V.; Barulli, M. R.; Bonfiglio, C.; Guerra, V.; Osella, A.; Seripa, D.; Sabbà, C.; Pilotto, A.; Logroscino, G. Coffee, Tea, and Caffeine Consumption and Prevention of Late-Life Cognitive Decline and Dementia: A Systematic Review. J. Nutr. Health Aging 2015, 19 (3), 313–328. https://doi.org/10.1007/s12603-014-0563-8.

(1214)   Poole, R.; Kennedy, O. J.; Roderick, P.; Fallowfield, J. A.; Hayes, P. C.; Parkes, J. Coffee Consumption and Health: Umbrella Review of Meta-Analyses of Multiple Health Outcomes. The BMJ 2017, 359. https://doi.org/10.1136/bmj.j5024.

(1215)   Zhang, Z.; Hu, G.; Caballero, B.; Appel, L.; Chen, L. Habitual Coffee Consumption and Risk of Hypertension: A Systematic Review and Meta-Analysis of Prospective Observational Studies. Am. J. Clin. Nutr. 2011, 93 (6), 1212–1219. https://doi.org/10.3945/ajcn.110.004044.

(1216)   Mesas, A. E.; Leon-Muñoz, L. M.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. The Effect of Coffee on Blood Pressure and Cardiovascular Disease in Hypertensive Individuals: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2011, 94 (4), 1113–1126. https://doi.org/10.3945/ajcn.111.016667.

(1217)   Azad, B. J.; Heshmati, J.; Daneshzad, E.; Palmowski, A. Effects of Coffee Consumption on Arterial Stiffness and Endothelial Function: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Crit. Rev. Food Sci. Nutr. 2020, 1–14. https://doi.org/10.1080/10408398.2020.1750343.

(1218)   Ding, M.; Bhupathiraju, S. N.; Satija, A.; van Dam, R. M.; Hu, F. B. Long-Term Coffee Consumption and Risk of Cardiovascular Disease: A Systematic Review and a Dose-Response Meta-Analysis of Prospective Cohort Studies. Circulation 2014, 129 (6), 643–659. https://doi.org/10.1161/CIRCULATIONAHA.113.005925.

(1219)   Salomone, F.; Galvano, F.; Li Volti, G. Molecular Bases Underlying the Hepatoprotective Effects of Coffee. Nutrients 2017, 9 (1). https://doi.org/10.3390/nu9010085.

(1220)   Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A. A.; Khan, G. J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; WenHua, L.; XiaoHui, Z. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. Biomedecine Pharmacother. 2018, 97, 67–74. https://doi.org/10.1016/j.biopha.2017.10.064.

(1221)   Martini, D.; Del Bo’, C.; Tassotti, M.; Riso, P.; Del Rio, D.; Brighenti, F.; Porrini, M. Coffee Consumption and Oxidative Stress: A Review of Human Intervention Studies. Molecules 2016, 21 (8). https://doi.org/10.3390/molecules21080979.

(1222)   Chen, L.-W.; Wu, Y.; Neelakantan, N.; Chong, M. F.-F.; Pan, A.; van Dam, R. M. Maternal Caffeine Intake during Pregnancy and Risk of Pregnancy Loss: A Categorical and Dose-Response Meta-Analysis of Prospective Studies. Public Health Nutr. 2016, 19 (7), 1233–1244. https://doi.org/10.1017/S1368980015002463.

(1223)   Jabbar, S. B.; Hanly, M. G. Fatal Caffeine Overdose: A Case Report and Review of Literature. Am. J. Forensic Med. Pathol. 2013, 34 (4), 321–324. https://doi.org/10.1097/PAF.0000000000000058.

(1224)   Killer, S. C.; Blannin, A. K.; Jeukendrup, A. E. No Evidence of Dehydration with Moderate Daily Coffee Intake: A Counterbalanced Cross-Over Study in a Free-Living Population. PLoS ONE 2014, 9 (1). https://doi.org/10.1371/journal.pone.0084154.

(1225)   Ueno, T.; Komatsu, M. Autophagy in the Liver: Functions in Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2017, 14 (3), 170–184. https://doi.org/10.1038/nrgastro.2016.185.

(1226)   Sciarretta, S.; Maejima, Y.; Zablocki, D.; Sadoshima, J. The Role of Autophagy in the Heart. Annu. Rev. Physiol. 2018, 80 (1), 1–26. https://doi.org/10.1146/annurev-physiol-021317-121427.

(1227)   Glick, D.; Barth, S.; Macleod, K. F. Autophagy: Cellular and Molecular Mechanisms. J. Pathol. 2010, 221 (1), 3–12. https://doi.org/10.1002/path.2697.

(1228)   Pickles, S.; Vigié, P.; Youle, R. J. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr. Biol. CB 2018, 28 (4), R170–R185. https://doi.org/10.1016/j.cub.2018.01.004.

(1229)   Mattson, M. P. Challenging Oneself Intermittently to Improve Health. Dose-Response Publ. Int. Hormesis Soc. 2014, 12 (4), 600–618. https://doi.org/10.2203/dose-response.14-028.Mattson.

(1230)   De Vynck, J. C.; Anderson, R.; Atwater, C.; Cowling, R. M.; Fisher, E. C.; Marean, C. W.; Walker, R. S.; Hill, K. Return Rates from Intertidal Foraging from Blombos Cave to Pinnacle Point: Understanding Early Human Economies. J. Hum. Evol. 2016, 92, 101–115. https://doi.org/10.1016/j.jhevol.2016.01.008.

(1231)   Ma, D.; Li, S.; Molusky, M. M.; Lin, J. D. Circadian Autophagy Rhythm: A Link between Clock and Metabolism? Trends Endocrinol. Metab. TEM 2012, 23 (7), 319–325. https://doi.org/10.1016/j.tem.2012.03.004.

(1232)   He, Y.; Cornelissen-Guillaume, G. G.; He, J.; Kastin, A. J.; Harrison, L. M.; Pan, W. Circadian Rhythm of Autophagy Proteins in Hippocampus Is Blunted by Sleep Fragmentation. Chronobiol. Int. 2016, 33 (5), 553–560. https://doi.org/10.3109/07420528.2015.1137581.

(1233)   Boga, J. A.; Caballero, B.; Potes, Y.; Perez-Martinez, Z.; Reiter, R. J.; Vega-Naredo, I.; Coto-Montes, A. Therapeutic Potential of Melatonin Related to Its Role as an Autophagy Regulator: A Review. J. Pineal Res. 2019, 66 (1), e12534. https://doi.org/10.1111/jpi.12534.

(1234)   Belkacemi, L.; Selselet-Attou, G.; Louchami, K.; Sener, A.; Malaisse, W. J. Intermittent Fasting Modulation of the Diabetic Syndrome in Sand Rats. II. In Vivo Investigations. Int. J. Mol. Med. 2010, 26 (5), 759–765. https://doi.org/10.3892/ijmm_00000523.

(1235)   Arumugam, T. V.; Phillips, T. M.; Cheng, A.; Morrell, C. H.; Mattson, M. P.; Wan, R. Age and Energy Intake Interact to Modify Cell Stress Pathways and Stroke Outcome. Ann. Neurol. 2010, 67 (1), 41–52. https://doi.org/10.1002/ana.21798.

(1236)   Lee, C.; Raffaghello, L.; Brandhorst, S.; Safdie, F. M.; Bianchi, G.; Martin-Montalvo, A.; Pistoia, V.; Wei, M.; Hwang, S.; Merlino, A.; Emionite, L.; de Cabo, R.; Longo, V. D. Fasting Cycles Retard Growth of Tumors and Sensitize a Range of Cancer Cell Types to Chemotherapy. Sci. Transl. Med. 2012, 4 (124), 124ra27. https://doi.org/10.1126/scitranslmed.3003293.

(1237)   Wang, F.; Jia, J.; Rodrigues, B. Autophagy, Metabolic Disease, and Pathogenesis of Heart Dysfunction. Can. J. Cardiol. 2017, 33 (7), 850–859. https://doi.org/10.1016/j.cjca.2017.01.002.

(1238)   van Niekerk, G.; du Toit, A.; Loos, B.; Engelbrecht, A.-M. Nutrient Excess and Autophagic Deficiency: Explaining Metabolic Diseases in Obesity. Metabolism. 2018, 82, 14–21. https://doi.org/10.1016/j.metabol.2017.12.007.

(1239)   Kim, J.; Lim, Y.-M.; Lee, M.-S. The Role of Autophagy in Systemic Metabolism and Human-Type Diabetes. Mol. Cells 2018, 41 (1), 11–17. https://doi.org/10.14348/molcells.2018.2228.

(1240)   Yin, H.; Wu, H.; Chen, Y.; Zhang, J.; Zheng, M.; Chen, G.; Li, L.; Lu, Q. The Therapeutic and Pathogenic Role of Autophagy in Autoimmune Diseases. Front. Immunol. 2018, 9, 1512. https://doi.org/10.3389/fimmu.2018.01512.

(1241)   Xu, Y.; Shen, J.; Ran, Z. Emerging Views of Mitophagy in Immunity and Autoimmune Diseases. Autophagy 2020, 16 (1), 3–17. https://doi.org/10.1080/15548627.2019.1603547.

(1242)   Yun, J.; Finkel, T. Mitohormesis. Cell Metab. 2014, 19 (5), 757–766. https://doi.org/10.1016/j.cmet.2014.01.011.

(1243)   Lettieri-Barbato, D.; Cannata, S. M.; Casagrande, V.; Ciriolo, M. R.; Aquilano, K. Time-Controlled Fasting Prevents Aging-like Mitochondrial Changes Induced by Persistent Dietary Fat Overload in Skeletal Muscle. PLoS ONE 2018, 13 (5). https://doi.org/10.1371/journal.pone.0195912.

(1244)   Bagherniya, M.; Butler, A. E.; Barreto, G. E.; Sahebkar, A. The Effect of Fasting or Calorie Restriction on Autophagy Induction: A Review of the Literature. Ageing Res. Rev. 2018, 47, 183–197. https://doi.org/10.1016/j.arr.2018.08.004.

(1245)   Owen, O. E.; Reichard, G. A.; Patel, M. S.; Boden, G. Energy Metabolism in Feasting and Fasting. Adv. Exp. Med. Biol. 1979, 111, 169–188. https://doi.org/10.1007/978-1-4757-0734-2_8.

(1246)   Lowell, B. B.; Goodman, M. N. Protein Sparing in Skeletal Muscle during Prolonged Starvation. Dependence on Lipid Fuel Availability. Diabetes 1987, 36 (1), 14–19. https://doi.org/10.2337/diab.36.1.14.

(1247)   Masiero, E.; Agatea, L.; Mammucari, C.; Blaauw, B.; Loro, E.; Komatsu, M.; Metzger, D.; Reggiani, C.; Schiaffino, S.; Sandri, M. Autophagy Is Required to Maintain Muscle Mass. Cell Metab. 2009, 10 (6), 507–515. https://doi.org/10.1016/j.cmet.2009.10.008.

(1248)   Stallmann, C.; Limmer, M.; Oertzen-Hagemann, V.; Platen, P. The Influence of Buchinger´s Fasting on Isometric Resistance Performance of Sports Students; 2016.

(1249)   Casper, R. C. Might Starvation-Induced Adaptations in Muscle Mass, Muscle Morphology and Muscle Function Contribute to the Increased Urge for Movement and to Spontaneous Physical Activity in Anorexia Nervosa? Nutrients 2020, 12 (7). https://doi.org/10.3390/nu12072060.

(1250)   Elia, M.; Stubbs, R. J.; Henry, C. J. Differences in Fat, Carbohydrate, and Protein Metabolism between Lean and Obese Subjects Undergoing Total Starvation. Obes. Res. 1999, 7 (6), 597–604. https://doi.org/10.1002/j.1550-8528.1999.tb00720.x.

(1251)   Blagosklonny, M. V. Fasting and Rapamycin: Diabetes versus Benevolent Glucose Intolerance. Cell Death Dis. 2019, 10 (8), 607. https://doi.org/10.1038/s41419-019-1822-8.

(1252)   Khan, L. U. R.; Ahmed, J.; Khan, S.; Macfie, J. Refeeding Syndrome: A Literature Review. Gastroenterol. Res. Pract. 2011, 2011. https://doi.org/10.1155/2011/410971.

(1253)   Wilhelmi de Toledo, F.; Buchinger, A.; Burggrabe, H.; Hölz, G.; Kuhn, C.; Lischka, E.; Lischka, N.; Lützner, H.; May, W.; Ritzmann-Widderich, M.; Stange, R.; Wessel, A.; Boschmann, M.; Peper, E.; Michalsen, A.; Medical Association for Fasting and Nutrition (Ärztegesellschaft für Heilfasten und Ernährung, ÄGHE. Fasting Therapy – an Expert Panel Update of the 2002 Consensus Guidelines. Forsch. Komplementarmedizin 2006 2013, 20 (6), 434–443. https://doi.org/10.1159/000357602.

(1254)   Wilhelmi de Toledo, F.; Grundler, F.; Bergouignan, A.; Drinda, S.; Michalsen, A. Safety, Health Improvement and Well-Being during a 4 to 21-Day Fasting Period in an Observational Study Including 1422 Subjects. PLOS ONE 2019, 14 (1), e0209353. https://doi.org/10.1371/journal.pone.0209353.

(1255)   Michalsen, A.; Schneider, S.; Rodenbeck, A.; Lüdtke, R.; Huether, G.; Dobos, G. J. The Short-Term Effects of Fasting on the Neuroendocrine System in Patients with Chronic Pain Syndromes. Nutr. Neurosci. 2003, 6 (1), 11–18. https://doi.org/10.1080/1028415021000042811.

(1256)   Faulconbridge, L. F.; Wadden, T. A.; Rubin, R. R.; Wing, R. R.; Walkup, M. P.; Fabricatore, A. N.; Coday, M.; Van Dorsten, B.; Mount, D. L.; Ewing, L. J.; Look AHEAD Research Group. One-Year Changes in Symptoms of Depression and Weight in Overweight/Obese Individuals with Type 2 Diabetes in the Look AHEAD Study. Obes. Silver Spring Md 2012, 20 (4), 783–793. https://doi.org/10.1038/oby.2011.315.

(1257)   Fond, G.; Macgregor, A.; Leboyer, M.; Michalsen, A. Fasting in Mood Disorders: Neurobiology and Effectiveness. A Review of the Literature. Psychiatry Res. 2013, 209 (3), 253–258. https://doi.org/10.1016/j.psychres.2012.12.018.

(1258)   Finnell, J. S.; Saul, B. C.; Goldhamer, A. C.; Myers, T. R. Is Fasting Safe? A Chart Review of Adverse Events during Medically Supervised, Water-Only Fasting. BMC Complement. Altern. Med. 2018, 18. https://doi.org/10.1186/s12906-018-2136-6.

(1259)   Li, Q.; Liu, Y.; Sun, M. Autophagy and Alzheimer’s Disease. Cell. Mol. Neurobiol. 2017, 37 (3), 377–388. https://doi.org/10.1007/s10571-016-0386-8.

(1260)   Moors, T. E.; Hoozemans, J. J. M.; Ingrassia, A.; Beccari, T.; Parnetti, L.; Chartier-Harlin, M.-C.; van de Berg, W. D. J. Therapeutic Potential of Autophagy-Enhancing Agents in Parkinson’s Disease. Mol. Neurodegener. 2017, 12 (1), 11. https://doi.org/10.1186/s13024-017-0154-3.

(1261)   Levy, J. M. M.; Towers, C. G.; Thorburn, A. Targeting Autophagy in Cancer. Nat. Rev. Cancer 2017, 17 (9), 528–542. https://doi.org/10.1038/nrc.2017.53.

(1262)   Sarparanta, J.; García-Macia, M.; Singh, R. Autophagy and Mitochondria in Obesity and Type 2 Diabetes. Curr. Diabetes Rev. 2017, 13 (4), 352–369. https://doi.org/10.2174/1573399812666160217122530.

(1263)   Hamano, T.; Hayashi, K.; Shirafuji, N.; Nakamoto, Y. The Implications of Autophagy in Alzheimer’s Disease. Curr. Alzheimer Res. 2018, 15 (14), 1283–1296. https://doi.org/10.2174/1567205015666181004143432.

(1264)   Marasco, M. R.; Linnemann, A. K. β-Cell Autophagy in Diabetes Pathogenesis. Endocrinology 2018, 159 (5), 2127–2141. https://doi.org/10.1210/en.2017-03273.

(1265)   Cerri, S.; Blandini, F. Role of Autophagy in Parkinson’s Disease. Curr. Med. Chem. 2019, 26 (20), 3702–3718. https://doi.org/10.2174/0929867325666180226094351.

(1266)   Levine, B.; Kroemer, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019, 176 (1–2), 11–42. https://doi.org/10.1016/j.cell.2018.09.048.

(1267)   Germic, N.; Frangez, Z.; Yousefi, S.; Simon, H.-U. Regulation of the Innate Immune System by Autophagy: Neutrophils, Eosinophils, Mast Cells, NK Cells. Cell Death Differ. 2019, 26 (4), 703–714. https://doi.org/10.1038/s41418-019-0295-8.

(1268)   Youm, Y.-H.; Nguyen, K. Y.; Grant, R. W.; Goldberg, E. L.; Bodogai, M.; Kim, D.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T. D.; Kang, S.; Horvath, T. L.; Fahmy, T. M.; Crawford, P. A.; Biragyn, A.; Alnemri, E.; Dixit, V. D. The Ketone Metabolite β-Hydroxybutyrate Blocks NLRP3 Inflammasome-Mediated Inflammatory Disease. Nat. Med. 2015, 21 (3), 263–269. https://doi.org/10.1038/nm.3804.

(1269)   Goldberg, E. L.; Asher, J. L.; Molony, R. D.; Shaw, A. C.; Zeiss, C. J.; Wang, C.; Morozova-Roche, L. A.; Herzog, R. I.; Iwasaki, A.; Dixit, V. D. β-Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares. Cell Rep. 2017, 18 (9), 2077–2087. https://doi.org/10.1016/j.celrep.2017.02.004.

(1270)   Shimazu, T.; Hirschey, M. D.; Newman, J.; He, W.; Shirakawa, K.; Le Moan, N.; Grueter, C. A.; Lim, H.; Saunders, L. R.; Stevens, R. D.; Newgard, C. B.; Farese, R. V.; de Cabo, R.; Ulrich, S.; Akassoglou, K.; Verdin, E. Suppression of Oxidative Stress by β-Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor. Science 2013, 339 (6116), 211–214. https://doi.org/10.1126/science.1227166.

(1271)   Achanta, L. B.; Rae, C. D. β-Hydroxybutyrate in the Brain: One Molecule, Multiple Mechanisms. Neurochem. Res. 2017, 42 (1), 35–49. https://doi.org/10.1007/s11064-016-2099-2.

(1272)   Ułamek-Kozioł, M.; Czuczwar, S. J.; Januszewski, S.; Pluta, R. Ketogenic Diet and Epilepsy. Nutrients 2019, 11 (10), 2510. https://doi.org/10.3390/nu11102510.

(1273)   Martin-McGill, K. J.; Bresnahan, R.; Levy, R. G.; Cooper, P. N. Ketogenic Diets for Drug-Resistant Epilepsy. Cochrane Database Syst. Rev. 2020, 6, CD001903. https://doi.org/10.1002/14651858.CD001903.pub5.

(1274)   Zhao, Z.; Lange, D. J.; Voustianiouk, A.; MacGrogan, D.; Ho, L.; Suh, J.; Humala, N.; Thiyagarajan, M.; Wang, J.; Pasinetti, G. M. A Ketogenic Diet as a Potential Novel Therapeutic Intervention in Amyotrophic Lateral Sclerosis. BMC Neurosci. 2006, 7, 29. https://doi.org/10.1186/1471-2202-7-29.

(1275)   Ruskin, D. N.; Jr, M. K.; Masino, S. A. Reduced Pain and Inflammation in Juvenile and Adult Rats Fed a Ketogenic Diet. PLOS ONE 2009, 4 (12), e8349. https://doi.org/10.1371/journal.pone.0008349.

(1276)   Lu, Y.; Yang, Y.-Y.; Zhou, M.-W.; Liu, N.; Xing, H.-Y.; Liu, X.-X.; Li, F. Ketogenic Diet Attenuates Oxidative Stress and Inflammation after Spinal Cord Injury by Activating Nrf2 and Suppressing the NF-ΚB Signaling Pathways. Neurosci. Lett. 2018, 683, 13–18. https://doi.org/10.1016/j.neulet.2018.06.016.

(1277)   Ruskin, D. N.; Sturdevant, I. C.; Wyss, L. S.; Masino, S. A. Ketogenic Diet Effects on Inflammatory Allodynia and Ongoing Pain in Rodents. Sci. Rep. 2021, 11, 725. https://doi.org/10.1038/s41598-020-80727-x.

(1278)   Wrann, C. D.; White, J. P.; Salogiannnis, J.; Laznik-Bogoslavski, D.; Wu, J.; Ma, D.; Lin, J. D.; Greenberg, M. E.; Spiegelman, B. M. Exercise Induces Hippocampal BDNF through a PGC-1α/FNDC5 Pathway. Cell Metab. 2013, 18 (5), 649–659. https://doi.org/10.1016/j.cmet.2013.09.008.

(1279)   Marosi, K.; Kim, S. W.; Moehl, K.; Scheibye-Knudsen, M.; Cheng, A.; Cutler, R.; Camandola, S.; Mattson, M. P. 3-Hydroxybutyrate Regulates Energy Metabolism and Induces BDNF Expression in Cerebral Cortical Neurons. J. Neurochem. 2016, 139 (5), 769–781. https://doi.org/10.1111/jnc.13868.

(1280) Shindo Y, Fujii T, Komatsu H, et al. Newly developed Mg2+-selective fluorescent probe enables visualization of Mg2+ dynamics in mitochondria. PLoS One. 2011;6(8):e23684. doi:10.1371/journal.pone.0023684

(1281) R Y, S T, Y S, et al. Mitochondrial Mg(2+) homeostasis decides cellular energy metabolism and vulnerability to stress. Scientific reports. 2016;6. doi:10.1038/srep30027

(1282) Kubota T, Shindo Y, Tokuno K, et al. Mitochondria are intracellular magnesium stores: investigation by simultaneous fluorescent imagings in PC12 cells. Biochim Biophys Acta. 2005;1744(1):19-28. doi:10.1016/j.bbamcr.2004.10.013

(1283)   Durlach J. Recommended dietary amounts of magnesium: Mg RDA. Magnes Res. 1989;2(3):195-203.

(1284) Eremenko NN, Shikh EV, Serebrova SY, Sizova ZM. Comparative study of the bioavailability of magnesium salts. Drug Metab Pers Ther. 2019;34(3). doi:10.1515/dmpt-2019-0004.

(1285) Uysal N, Kizildag S, Yuce Z, et al. Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best? Biol Trace Elem Res. 2019;187(1):128-136. doi:10.1007/s12011-018-1351-9

(1286) Bagna R, Spada E, Mazzone R, et al. Efficacy of Supplementation with Iron Sulfate Compared to   Iron 
Bisglycinate Chelate in Preterm Infants. Curr Pediatr Rev. 2018;14(2):123-129. doi:10.2174/1573396314666180124101059

(1287) D M, Js G, C Z, et al. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood. 2015;126(17). doi:10.1182/blood-2015-05-642223

(1288) Stoffel NU, Cercamondi CI, Brittenham G, et al. Iron absorption from oral iron supplements given on consecutive versus alternate days and as single morning doses versus twice-daily split dosing in iron-depleted women: two open-label, randomised controlled trials. Lancet Haematol. 2017;4(11):e524-e533. doi:10.1016/S2352-3026(17)30182-5(1289) Nu S, C Z, Gm B, D M, Mb Z. Iron absorption from supplements is greater with alternate day than with consecutive day dosing in iron-deficient anemic women. Haematologica. 2020;105(5). doi:10.3324/haematol.2019.220830

Partie 3 : Écologie et nutrition, une seule et même solution

(1)      Hickman, C.; Marks, E.; Pihkala, P.; Clayton, S.; Lewandowski, R. E.; Mayall, E. E.; Wray, B.; Mellor, C.; Susteren, L. van. Climate Anxiety in Children and Young People and Their Beliefs about Government Responses to Climate Change: A Global Survey. Lancet Planet. Health 2021, 5 (12), e863–e873. https://doi.org/10.1016/S2542-5196(21)00278-3.

(2)      Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S. E.; Fetzer, I.; Bennett, E. M.; Biggs, R.; Carpenter, S. R.; de Vries, W.; de Wit, C. A.; Folke, C.; Gerten, D.; Heinke, J.; Mace, G. M.; Persson, L. M.; Ramanathan, V.; Reyers, B.; Sörlin, S. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347 (6223), 1259855. https://doi.org/10.1126/science.1259855.

(3)      Persson, L.; Carney Almroth, B. M.; Collins, C. D.; Cornell, S.; de Wit, C. A.; Diamond, M. L.; Fantke, P.; Hassellöv, M.; MacLeod, M.; Ryberg, M. W.; Søgaard Jørgensen, P.; Villarrubia-Gómez, P.; Wang, Z.; Hauschild, M. Z. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Environ. Sci. Technol. 2022, 56 (3), 1510–1521. https://doi.org/10.1021/acs.est.1c04158.

(4)      Wang-Erlandsson, L.; Tobian, A.; van der Ent, R. J.; Fetzer, I.; te Wierik, S.; Porkka, M.; Staal, A.; Jaramillo, F.; Dahlmann, H.; Singh, C.; Greve, P.; Gerten, D.; Keys, P. W.; Gleeson, T.; Cornell, S. E.; Steffen, W.; Bai, X.; Rockström, J. A Planetary Boundary for Green Water. Nat. Rev. Earth Environ. 2022, 1–13. https://doi.org/10.1038/s43017-022-00287-8.

(5)      Barnosky, A. D.; Hadly, E. A.; Bascompte, J.; Berlow, E. L.; Brown, J. H.; Fortelius, M.; Getz, W. M.; Harte, J.; Hastings, A.; Marquet, P. A.; Martinez, N. D.; Mooers, A.; Roopnarine, P.; Vermeij, G.; Williams, J. W.; Gillespie, R.; Kitzes, J.; Marshall, C.; Matzke, N.; Mindell, D. P.; Revilla, E.; Smith, A. B. Approaching a State Shift in Earth’s Biosphere. Nature 2012, 486 (7401), 52–58. https://doi.org/10.1038/nature11018.

(6)      GIEC. www.Ipcc.ch.

(7)      Hallmann, C. A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; Goulson, D.; de Kroon, H. More than 75 Percent Decline over 27 Years in Total Flying Insect Biomass in Protected Areas. PloS One 2017, 12 (10), e0185809. https://doi.org/10.1371/journal.pone.0185809.

(8)      FAO. Contributing to Food Security and Nutrition for All; The state of world fisheries and aquaculture; Rome, 2016.

(9)      Thawing Permafrost Could Leach Microbes, Chemicals Into Environment. NASA Jet Propulsion Laboratory (JPL). https://www.jpl.nasa.gov/news/thawing-permafrost-could-leach-microbes-chemicals-into-environment (accessed 2022-03-23).

(10)    Revich, B.; Tokarevich, N.; Parkinson, A. J. Climate Change and Zoonotic Infections in the Russian Arctic. Int. J. Circumpolar Health 2012, 71, 18792. https://doi.org/10.3402/ijch.v71i0.18792.

(11)    Stella, E.; Mari, L.; Gabrieli, J.; Barbante, C.; Bertuzzo, E. Permafrost Dynamics and the Risk of Anthrax Transmission: A Modelling Study. Sci. Rep. 2020, 10 (1), 16460. https://doi.org/10.1038/s41598-020-72440-6.

(12)    Hultman, J.; Waldrop, M. P.; Mackelprang, R.; David, M. M.; McFarland, J.; Blazewicz, S. J.; Harden, J.; Turetsky, M. R.; McGuire, A. D.; Shah, M. B.; VerBerkmoes, N. C.; Lee, L. H.; Mavrommatis, K.; Jansson, J. K. Multi-Omics of Permafrost, Active Layer and Thermokarst Bog Soil Microbiomes. Nature 2015, 521 (7551), 208–212. https://doi.org/10.1038/nature14238.

(13)    Legendre, M.; Lartigue, A.; Bertaux, L.; Jeudy, S.; Bartoli, J.; Lescot, M.; Alempic, J.-M.; Ramus, C.; Bruley, C.; Labadie, K.; Shmakova, L.; Rivkina, E.; Couté, Y.; Abergel, C.; Claverie, J.-M. In-Depth Study of Mollivirus Sibericum, a New 30,000-y-Old Giant Virus Infecting Acanthamoeba. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (38), E5327-5335. https://doi.org/10.1073/pnas.1510795112.

(14)    Doloisio, N.; Vanderlinden, J.-P. The Perception of Permafrost Thaw in the Sakha Republic (Russia): Narratives, Culture and Risk in the Face of Climate Change. Polar Sci. 2020, 26, 100589. https://doi.org/10.1016/j.polar.2020.100589.

(15)    Miner, K. R.; Turetsky, M. R.; Malina, E.; Bartsch, A.; Tamminen, J.; McGuire, A. D.; Fix, A.; Sweeney, C.; Elder, C. D.; Miller, C. E. Permafrost Carbon Emissions in a Changing Arctic. Nat. Rev. Earth Environ. 2022, 3 (1), 55–67. https://doi.org/10.1038/s43017-021-00230-3.

(16)    Schuster, P. F.; Schaefer, K. M.; Aiken, G. R.; Antweiler, R. C.; Dewild, J. F.; Gryziec, J. D.; Gusmeroli, A.; Hugelius, G.; Jafarov, E.; Krabbenhoft, D. P.; Liu, L.; Herman‐Mercer, N.; Mu, C.; Roth, D. A.; Schaefer, T.; Striegl, R. G.; Wickland, K. P.; Zhang, T. Permafrost Stores a Globally Significant Amount of Mercury. Geophys. Res. Lett. 2018, 45 (3), 1463–1471. https://doi.org/10.1002/2017GL075571.

(17)    Farquharson, L. M.; Romanovsky, V. E.; Cable, W. L.; Walker, D. A.; Kokelj, S. V.; Nicolsky, D. Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic. Geophys. Res. Lett. 2019, 46 (12), 6681–6689. https://doi.org/10.1029/2019GL082187.

(18)    Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T. M.; Folke, C.; Liverman, D.; Summerhayes, C. P.; Barnosky, A. D.; Cornell, S. E.; Crucifix, M.; Donges, J. F.; Fetzer, I.; Lade, S. J.; Scheffer, M.; Winkelmann, R.; Schellnhuber, H. J. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (33), 8252–8259. https://doi.org/10.1073/pnas.1810141115.

(19)    Ceballos, G.; Ehrlich, P. R.; Dirzo, R. Biological Annihilation via the Ongoing Sixth Mass Extinction Signaled by Vertebrate Population Losses and Declines. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (30), E6089–E6096. https://doi.org/10.1073/pnas.1704949114.

(20)    IPBES. Le Dangereux Déclin de La Nature : Un Taux d’extinction Des Espèces « sans Précédent » et Qui s’accélère; IPBES, 2019.

(21)    Sala, O. E.; Chapin, F. S.; Armesto, J. J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L. F.; Jackson, R. B.; Kinzig, A.; Leemans, R.; Lodge, D. M.; Mooney, H. A.; Oesterheld, M.; Poff, N. L.; Sykes, M. T.; Walker, B. H.; Walker, M.; Wall, D. H. Global Biodiversity Scenarios for the Year 2100. Science 2000, 287 (5459), 1770–1774. https://doi.org/10.1126/science.287.5459.1770.

(22)    Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W. H.; Simberloff, D.; Swackhamer, D. Forecasting Agriculturally Driven Global Environmental Change. Science 2001, 292 (5515), 281–284. https://doi.org/10.1126/science.1057544.

(23)    Rapport des Nations Unies : L’année de la pandémie est marquée par une hausse de la faim dans le monde. https://www.who.int/fr/news/item/12-07-2021-un-report-pandemic-year-marked-by-spike-in-world-hunger (accessed 2021-10-28).

(24)    OECD Data. GDP and unemployment rate forecast. OECD Data. http://data.oecd.org (accessed 2019-12-27).

(25)    Fodor, N.; Challinor, A.; Droutsas, I.; Ramirez-Villegas, J.; Zabel, F.; Koehler, A.-K.; Foyer, C. H. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production. Plant Cell Physiol. 2017, 58 (11), 1833–1847. https://doi.org/10.1093/pcp/pcx141.

(26)    Zhang, Y.; Wang, Y.; Niu, H. Effects of Temperature, Precipitation and Carbon Dioxide Concentrations on the Requirements for Crop Irrigation Water in China under Future Climate Scenarios. Sci. Total Environ. 2019, 656, 373–387. https://doi.org/10.1016/j.scitotenv.2018.11.362.

(27)    Slattery, R. A.; Ort, D. R. Carbon Assimilation in Crops at High Temperatures. Plant Cell Environ. 2019, 42 (10), 2750–2758. https://doi.org/10.1111/pce.13572.

(28)    Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D. B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; Durand, J.-L.; Elliott, J.; Ewert, F.; Janssens, I. A.; Li, T.; Lin, E.; Liu, Q.; Martre, P.; Müller, C.; Peng, S.; Peñuelas, J.; Ruane, A. C.; Wallach, D.; Wang, T.; Wu, D.; Liu, Z.; Zhu, Y.; Zhu, Z.; Asseng, S. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. 2017, 114 (35), 9326–9331. https://doi.org/10.1073/pnas.1701762114.

(29)    Camilleri, A. R.; Larrick, R. P.; Hossain, S.; Patino-Echeverri, D. Consumers Underestimate the Emissions Associated with Food but Are Aided by Labels. Nat. Clim. Change 2019, 9 (1), 53. https://doi.org/10.1038/s41558-018-0354-z.

(30)    Wollenberg, E. and col. Reducing Emissions from Agriculture to Meet the 2 °C Target. Glob. Change Biol. 2016, 22 (12), 3859–3864. https://doi.org/10.1111/gcb.13340.

(31)    Recherche Agribalyse. https://agribalyse.ademe.fr/app (accessed 2021-07-27).

(32)    Usubharatana, P.; Phungrassami, H. Evaluation of Opportunities to Reduce the Carbon Footprint of Fresh and Canned Pineapple Processing in Central Thailand. Pol. J. Environ. Stud. 2017, 26. https://doi.org/10.15244/pjoes/69442.

(33)    Frankowska, A.; Jeswani, H. K.; Azapagic, A. Life Cycle Environmental Impacts of Fruits Consumption in the UK. J. Environ. Manage. 2019, 248, 109111. https://doi.org/10.1016/j.jenvman.2019.06.012.

(34)    Schader, C.; Muller, A.; Scialabba, N. E.-H.; Hecht, J.; Isensee, A.; Erb, K.-H.; Smith, P.; Makkar, H. P. S.; Klocke, P.; Leiber, F.; Schwegler, P.; Stolze, M.; Niggli, U. Impacts of Feeding Less Food-Competing Feedstuffs to Livestock on Global Food System Sustainability. J. R. Soc. Interface 2015, 12 (113), 20150891. https://doi.org/10.1098/rsif.2015.0891.

(35)    Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360 (6392), 987–992. https://doi.org/10.1126/science.aaq0216.

(36)    Clune, S.; Crossin, E.; Verghese, K. Systematic Review of Greenhouse Gas Emissions for Different Fresh Food Categories. J. Clean. Prod. 2017, 140, 766–783. https://doi.org/10.1016/j.jclepro.2016.04.082.

(37)    Vieux, F.; Soler, L.-G.; Touazi, D.; Darmon, N. High Nutritional Quality Is Not Associated with Low Greenhouse Gas Emissions in Self-Selected Diets of French Adults. Am. J. Clin. Nutr. 2013, 97 (3), 569–583. https://doi.org/10.3945/ajcn.112.035105.

(38)    Wada, Y.; Beek, L. P. H. van; Bierkens, M. F. P. Modelling Global Water Stress of the Recent Past: On the Relative Importance of Trends in Water Demand and Climate Variability. Hydrol. Earth Syst. Sci. 2011, 15 (12), 3785–3808. https://doi.org/10.5194/hess-15-3785-2011.

(39)    Wada, Y.; Beek, L. P. H. van; Bierkens, M. F. P. Modelling Global Water Stress of the Recent Past: On the Relative Importance of Trends in Water Demand and Climate Variability. Hydrol. Earth Syst. Sci. 2011, 15 (12), 3785–3808. https://doi.org/10.5194/hess-15-3785-2011.

(40)    Gerten, D.; Hoff, H.; Rockström, J.; Jägermeyr, J.; Kummu, M.; Pastor, A. Towards a Revised Planetary Boundary for Consumptive Freshwater Use: Role of Environmental Flow Requirements. Curr. Opin. Environ. Sustain. 2013, 5, 551–558. https://doi.org/10.1016/j.cosust.2013.11.001.

(41)    Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; Jonell, M.; Clark, M.; Gordon, L. J.; Fanzo, J.; Hawkes, C.; Zurayk, R.; Rivera, J. A.; De Vries, W.; Majele Sibanda, L.; Afshin, A.; Chaudhary, A.; Herrero, M.; Agustina, R.; Branca, F.; Lartey, A.; Fan, S.; Crona, B.; Fox, E.; Bignet, V.; Troell, M.; Lindahl, T.; Singh, S.; Cornell, S. E.; Srinath Reddy, K.; Narain, S.; Nishtar, S.; Murray, C. J. L. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. The Lancet 2019. https://doi.org/10.1016/S0140-6736(18)31788-4.

(42)    Aldaya, M. M. The Water Footprint Assessment Manual: Setting the Global Standard, 1st ed.; Routledge, 2012. https://doi.org/10.4324/9781849775526.

(43)    FAO. Food Wastage Footprint: Impacts on Natural Resources; Summary report; FAO, 2013.

(44)    Benoist, A.; Steene, L. van de; Broust, F.; Helias, A. Enjeux environnementaux du développement des biocarburants liquides pour le transport. Sci. Eaux Territ. 2012, Numéro 7 (2), 66–73.

(45)    Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C. M.; Crowther, T. W. The Global Tree Restoration Potential. Science 2019, 365 (6448), 76–79. https://doi.org/10.1126/science.aax0848.

(46)    Cordell, D.; Drangert, J.-O.; White, S. The Story of Phosphorus: Global Food Security and Food for Thought. Glob. Environ. Change 2009, 19 (2), 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009.

(47)    Reitzel, K. and col. New Training to Meet the Global Phosphorus Challenge. Environ. Sci. Technol. 2019, 53 (15), 8479–8481. https://doi.org/10.1021/acs.est.9b03519.

(48)    Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B. L.; Lassaletta, L.; Vries, W. de; Vermeulen, S. J.; Herrero, M.; Carlson, K. M.; Jonell, M.; Troell, M.; DeClerck, F.; Gordon, L. J.; Zurayk, R.; Scarborough, P.; Rayner, M.; Loken, B.; Fanzo, J.; Godfray, H. C. J.; Tilman, D.; Rockström, J.; Willett, W. Options for Keeping the Food System within Environmental Limits. Nature 2018, 562 (7728), 519. https://doi.org/10.1038/s41586-018-0594-0.

(49)    Bryngelsson, D.; Wirsenius, S.; Hedenus, F.; Sonesson, U. How Can the EU Climate Targets Be Met? A Combined Analysis of Technological and Demand-Side Changes in Food and Agriculture. Food Policy 2016, 59, 152–164. https://doi.org/10.1016/j.foodpol.2015.12.012.

(50)    Vanham, D.; Mekonnen, M. M.; Hoekstra, A. Y. Treenuts and Groundnuts in the EAT-Lancet Reference Diet: Concerns Regarding Sustainable Water Use. Glob. Food Secur. 2020, 24, 100357. https://doi.org/10.1016/j.gfs.2020.100357.

(51)    MULHERN, G. Worldwide, 74% of irrigated nuts are produced under water stress. EU Science Hub – European Commission. https://ec.europa.eu/jrc/en/science-update/worldwide-74-irrigated-nuts-are-produced-under-water-stress (accessed 2021-06-26).

(52)    Akanni, K. A.; Dada, A. O. Analysis of Labour-Use Patterns among Small-Holder Cocoa Farmers in South Western Nigeria. J. Agric. Sci. Technol. B 2012, 2 (1), 107–113.

(53)    Wijeratne, T. Assessing and Reducing the Environmental Impact of Tea Cultivation; 2018; pp 473–483. https://doi.org/10.19103/AS.2017.0036.20.

(54)    Munasinghe, M.; Deraniyagala, Y.; Dassanayake, N.; Karunarathna, H. Economic, Social and Environmental Impacts and Overall Sustainability of the Tea Sector in Sri Lanka. Sustain. Prod. Consum. 2017, 12, 155–169. https://doi.org/10.1016/j.spc.2017.07.003.

(55)    Haug, L. S.; Sakhi, A. K.; Cequier, E.; Casas, M.; Maitre, L.; Basagana, X.; Andrusaityte, S.; Chalkiadaki, G.; Chatzi, L.; Coen, M.; de Bont, J.; Dedele, A.; Ferrand, J.; Grazuleviciene, R.; Gonzalez, J. R.; Gutzkow, K. B.; Keun, H.; McEachan, R.; Meltzer, H. M.; Petraviciene, I.; Robinson, O.; Saulnier, P.-J.; Slama, R.; Sunyer, J.; Urquiza, J.; Vafeiadi, M.; Wright, J.; Vrijheid, M.; Thomsen, C. In-Utero and Childhood Chemical Exposome in Six European Mother-Child Cohorts. Environ. Int. 2018, 121 (Pt 1), 751–763. https://doi.org/10.1016/j.envint.2018.09.056.

(56)    Jiang, C.; Wang, X.; Li, X.; Inlora, J.; Wang, T.; Liu, Q.; Snyder, M. Dynamic Human Environmental Exposome Revealed by Longitudinal Personal Monitoring. Cell 2018, 175 (1), 277-291.e31. https://doi.org/10.1016/j.cell.2018.08.060.

(57)    ANSES. Étude Pesti’home- Enquête Nationale Sur Les Utilisations Domestiques de Pesticides; Rapport d’étude; Anses: Maisons-Alfort, 2019.

(58)    Van Maele-Fabry, G.; Hoet, P.; Vilain, F.; Lison, D. Occupational Exposure to Pesticides and Parkinson’s Disease: A Systematic Review and Meta-Analysis of Cohort Studies. Environ. Int. 2012, 46, 30–43. https://doi.org/10.1016/j.envint.2012.05.004.

(59)    Guyton, K. Z.; Loomis, D.; Grosse, Y.; Ghissassi, F. E.; Benbrahim-Tallaa, L.; Guha, N.; Scoccianti, C.; Mattock, H.; Straif, K. Carcinogenicity of Tetrachlorvinphos, Parathion, Malathion, Diazinon, and Glyphosate. Lancet Oncol. 2015, 16 (5), 490–491. https://doi.org/10.1016/S1470-2045(15)70134-8.

(60)    Yan, D.; Zhang, Y.; Liu, L.; Yan, H. Pesticide Exposure and Risk of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Sci. Rep. 2016, 6, 32222. https://doi.org/10.1038/srep32222.

(61)    Sánchez-Santed, F.; Colomina, M. T.; Herrero Hernández, E. Organophosphate Pesticide Exposure and Neurodegeneration. Cortex J. Devoted Study Nerv. Syst. Behav. 2016, 74, 417–426. https://doi.org/10.1016/j.cortex.2015.10.003.

(62)    Gunnarsson, L.-G.; Bodin, L. Amyotrophic Lateral Sclerosis and Occupational Exposures: A Systematic Literature Review and Meta-Analyses. Int. J. Environ. Res. Public. Health 2018, 15 (11). https://doi.org/10.3390/ijerph15112371.

(63)    Chiu, Y.-H.; Williams, P. L.; Gillman, M. W.; Gaskins, A. J.; Mínguez-Alarcón, L.; Souter, I.; Toth, T. L.; Ford, J. B.; Hauser, R.; Chavarro, J. E. Association Between Pesticide Residue Intake From Consumption of Fruits and Vegetables and Pregnancy Outcomes Among Women Undergoing Infertility Treatment With Assisted Reproductive Technology. JAMA Intern. Med. 2018, 178 (1), 17–26. https://doi.org/10.1001/jamainternmed.2017.5038.

(64)    Shelton, J. F.; Hertz-Picciotto, I. Neurodevelopmental Disorders and Agricultural Pesticide Exposures: Shelton and Hertz-Picciotto Respond. Environ. Health Perspect. 2015, 123 (4), A79–A80. https://doi.org/10.1289/ehp.1409124R.

(65)    Larsen, A. E.; Gaines, S. D.; Deschênes, O. Agricultural Pesticide Use and Adverse Birth Outcomes in the San Joaquin Valley of California. Nat. Commun. 2017, 8 (1), 1–9. https://doi.org/10.1038/s41467-017-00349-2.

(66)    Ehrenstein, O. S. von; Ling, C.; Cui, X.; Cockburn, M.; Park, A. S.; Yu, F.; Wu, J.; Ritz, B. Prenatal and Infant Exposure to Ambient Pesticides and Autism Spectrum Disorder in Children: Population Based Case-Control Study. BMJ 2019, 364. https://doi.org/10.1136/bmj.l962.

(67)    Rizzati, V.; Briand, O.; Guillou, H.; Gamet-Payrastre, L. Effects of Pesticide Mixtures in Human and Animal Models: An Update of the Recent Literature. Chem. Biol. Interact. 2016, 254. https://doi.org/10.1016/j.cbi.2016.06.003.

(68)    Pajurek, M.; Pietron, W.; Maszewski, S.; Mikolajczyk, S.; Piskorska-Pliszczynska, J. Poultry Eggs as a Source of PCDD/Fs, PCBs, PBDEs and PBDD/Fs. Chemosphere 2019, 223, 651–658. https://doi.org/10.1016/j.chemosphere.2019.02.023.

(69)    Amutova, F.; Delannoy, M.; Baubekova, A.; Konuspayeva, G.; Jurjanz, S. Transfer of Persistent Organic Pollutants in Food of Animal Origin – Meta-Analysis of Published Data. Chemosphere 2021, 262, 128351. https://doi.org/10.1016/j.chemosphere.2020.128351.

(70)    Bailey, D. C.; Todt, C. E.; Burchfield, S. L.; Pressley, A. S.; Denney, R. D.; Snapp, I. B.; Negga, R.; Traynor, W. L.; Fitsanakis, V. A. Chronic Exposure to a Glyphosate-Containing Pesticide Leads to Mitochondrial Dysfunction and Increased Reactive Oxygen Species Production in Caenorhabditis Elegans. Environ. Toxicol. Pharmacol. 2018, 57, 46–52. https://doi.org/10.1016/j.etap.2017.11.005.

(71)    Hao, Y.; Chen, H.; Xu, W.; Gao, J.; Yang, Y.; Zhang, Y.; Tao, L. Roundup® Confers Cytotoxicity through DNA Damage and Mitochondria-Associated Apoptosis Induction. Environ. Pollut. Barking Essex 1987 2019, 252 (Pt A), 917–923. https://doi.org/10.1016/j.envpol.2019.05.128.

(72)    Peixoto, F.; Vicente, J. A. F.; Madeira, V. M. C. Comparative Effects of Herbicide Dicamba and Related Compound on Plant Mitochondrial Bioenergetics. J. Biochem. Mol. Toxicol. 2003, 17 (3), 185–192. https://doi.org/10.1002/jbt.10077.

(73)    Peixoto, F.; Vicente, J. A. F.; Madeira, V. M. C. The Herbicide Dicamba (2-Methoxy-3,6-Dichlorobenzoic Acid) Interacts with Mitochondrial Bioenergetic Functions. Arch. Toxicol. 2003, 77 (7), 403–409. https://doi.org/10.1007/s00204-003-0456-9.

(74)    Bednářová, A.; Kropf, M.; Krishnan, N. The Surfactant Polyethoxylated Tallowamine (POEA) Reduces Lifespan and Inhibits Fecundity in Drosophila Melanogaster- In Vivo and in Vitro Study. Ecotoxicol. Environ. Saf. 2020, 188, 109883. https://doi.org/10.1016/j.ecoenv.2019.109883.

(75)    Rochester, J. R.; Bolden, A. L. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ. Health Perspect. 2015, 123 (7), 643–650. https://doi.org/10.1289/ehp.1408989.

(76)    Charisiadis, P.; Andrianou, X. D.; van der Meer, T. P.; den Dunnen, W. F. A.; Swaab, D. F.; Wolffenbuttel, B. H. R.; Makris, K. C.; van Vliet-Ostaptchouk, J. V. Possible Obesogenic Effects of Bisphenols Accumulation in the Human Brain. Sci. Rep. 2018, 8 (1), 8186. https://doi.org/10.1038/s41598-018-26498-y.

(77)    Bisphenol M, Ali, Jaghbir M, Salam M, Al-Kadamany G, Damsees R, et Al-Rawashdeh N. « Testing Baby Bottles for the Presence of Residual and Migrated Bisphenol A ». Environmental Monitoring and Assessment 191, no 1 (12 juillet 2018). https://doi.org/10.1007/s10661-018-7126-0.

(78)   Hatch, E. E.; Nelson, J. W.; Qureshi, M. M.; Weinberg, J.; Moore, L. L.; Singer, M.; Webster, T. F. Association of Urinary Phthalate Metabolite Concentrations with Body Mass Index and Waist Circumference: A Cross-Sectional Study of NHANES Data, 1999-2002. Environ. Health Glob. Access Sci. Source 2008, 7, 27. https://doi.org/10.1186/1476-069X-7-27.

(79)    Braun, J. M.; Sathyanarayana, S.; Hauser, R. Phthalate Exposure and Children’s Health. Curr. Opin. Pediatr. 2013, 25 (2), 247–254. https://doi.org/10.1097/MOP.0b013e32835e1eb6.

(80)    Hu, D.; Wang, Y.; Chen, W.-J.; Zhang, Y.; Li, H.; Xiong, L.; Zhu, H.; Chen, H.; Peng, S.; Wan, Z.; Zhang, Y.; Du, Y. Associations of Phthalates Exposure with Attention Deficits Hyperactivity Disorder: A Case-Control Study among Chinese Children. Environ. Pollut. 2017, 229, 375–385. https://doi.org/10.1016/j.envpol.2017.05.089.

(81)    Pham, D. N.; Clark, L.; Li, M. Microplastics as Hubs Enriching Antibiotic-Resistant Bacteria and Pathogens in Municipal Activated Sludge. J. Hazard. Mater. Lett. 2021, 2, 100014. https://doi.org/10.1016/j.hazl.2021.100014.

(82)    Senathirajah, K.; Palanisami, T. How Much Microplastics Are We Ingesting?: Estimation of the Mass of Microplastics Ingested. The University of Newcastle. Australia June 11, 2019.

(83)    Leslie, H. A.; van Velzen, M. J. M.; Brandsma, S. H.; Vethaak, A. D.; Garcia-Vallejo, J. J.; Lamoree, M. H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. https://doi.org/10.1016/j.envint.2022.107199.

(84)    Mason, S. A. Synthétic Polymer Contamination in Bottled Water., 2018.

(85)    Gambino, I.; Bagordo, F.; Grassi, T.; Panico, A.; De Donno, A. Occurrence of Microplastics in Tap and Bottled Water: Current Knowledge. Int. J. Environ. Res. Public. Health 2022, 19 (9), 5283. https://doi.org/10.3390/ijerph19095283.

(86)    Besse, J.-P. Impact Environnemental Des Médicaments à Usage Humain Sur Le Milieu Récepteur : Évaluation de l’exposition et Des Effets Pour Les Écosystèmes d’eau Douce. These de doctorat, Metz, 2010.

(87)    Dévier, M.-H.; Le Menach, K.; Viglino, L.; Di Gioia, L.; Lachassagne, P.; Budzinski, H. Ultra-Trace Analysis of Hormones, Pharmaceutical Substances, Alkylphenols and Phthalates in Two French Natural Mineral Waters. Sci. Total Environ. 2013, 443, 621–632. https://doi.org/10.1016/j.scitotenv.2012.10.015.

(88)    Minguez, L.; Pedelucq, J.; Farcy, E.; Ballandonne, C.; Budzinski, H.; Halm-Lemeille, M.-P. Toxicities of 48 Pharmaceuticals and Their Freshwater and Marine Environmental Assessment in Northwestern France. Environ. Sci. Pollut. Res. Int. 2016, 23 (6), 4992–5001. https://doi.org/10.1007/s11356-014-3662-5.

(89)    Gabet-Giraud, V. Distribution d’estrogènes et de bêtabloquants dans les stations d’épuration des eaux résiduaires et dans l’eau de surface. phdthesis, Université Claude Bernard – Lyon I, 2009.

(90)    Jobling, S.; Burn, Robert. W.; Thorpe, K.; Williams, R.; Tyler, C. Statistical Modeling Suggests That Antiandrogens in Effluents from Wastewater Treatment Works Contribute to Widespread Sexual Disruption in Fish Living in English Rivers. Environ. Health Perspect. 2009, 117 (5), 797–802. https://doi.org/10.1289/ehp.0800197.

(91)    SETAC. Annual Meeting. Helsinki, 2019.

(92)    Larsson, D. G. J.; de Pedro, C.; Paxeus, N. Effluent from Drug Manufactures Contains Extremely High Levels of Pharmaceuticals. J. Hazard. Mater. 2007, 148 (3), 751–755. https://doi.org/10.1016/j.jhazmat.2007.07.008.

(93)    Dantas, G.; Sommer, M. O. A.; Oluwasegun, R. D.; Church, G. M. Bacteria Subsisting on Antibiotics. Science 2008, 320 (5872), 100–103. https://doi.org/10.1126/science.1155157.

(94)    Berendonk, T. U.; Manaia, C. M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.-N.; Kreuzinger, N.; Huovinen, P.; Stefani, S.; Schwartz, T.; Kisand, V.; Baquero, F.; Martinez, J. L. Tackling Antibiotic Resistance: The Environmental Framework. Nat. Rev. Microbiol. 2015, 13 (5), 310–317. https://doi.org/10.1038/nrmicro3439.

(95)    Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D. G. J. Environmental Factors Influencing the Development and Spread of Antibiotic Resistance. FEMS Microbiol. Rev. 2018, 42 (1). https://doi.org/10.1093/femsre/fux053.

(96)    Piddock, L. J. V. The Crisis of No New Antibiotics–What Is the Way Forward? Lancet Infect. Dis. 2012, 12 (3), 249–253. https://doi.org/10.1016/S1473-3099(11)70316-4.

(97)    Exposition aux métaux de la population française : résultats de l’étude ESTEBAN. https://www.santepubliquefrance.fr/presse/2021/exposition-aux-metaux-de-la-population-francaise-resultats-de-l-etude-esteban (accessed 2021-08-15).

(98)    ANSES. Avis de l’agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et Du Travail Relatif Aux Recommandations Sur Les Bénéfices et Les Risques Liés à La Consommation de Produits de La Pêche Dans Le Cadre de l’actualisation Des Repères Nutritionnels Du PNNS., 2013.

(99)    Bustnes, J. O.; Nygård, T.; Dempster, T.; Ciesielski, T.; Jenssen, B. M.; Bjørn, P. A.; Uglem, I. Do Salmon Farms Increase the Concentrations of Mercury and Other Elements in Wild Fish? J. Environ. Monit. 13 (6), 1687.

(100)    Debruyn, A.; Trudel, M.; Eyding, N.; Harding, J.; McNally, H.; Mountain, R.; Orr, C.; Urban, D.; Verenitch, S.; Mazumder, A. Ecosystemic Effects of Salmon Farming Increase Mercury Contamination in Wild Fish. Environ. Sci. Technol. 2006, 40, 3489–3493. https://doi.org/10.1021/es0520161.

(101) Hojsak, I.; Braegger, C.; Bronsky, J.; Campoy, C.; Colomb, V.; Decsi, T.; Domellöf, M.; Fewtrell, M.; Mis, N. F.; Mihatsch, W.; Molgaard, C.; van Goudoever, J.; ESPGHAN Committee on Nutrition. Arsenic in Rice: A Cause for Concern. J. Pediatr. Gastroenterol. Nutr. 2015, 60 (1), 142–145. https://doi.org/10.1097/MPG.0000000000000502.

(102) Carignan, C. C.; Punshon, T.; Karagas, M. R.; Cottingham, K. L. Potential Exposure to Arsenic from Infant Rice Cereal. Ann. Glob. Health 2016, 82 (1), 221–224. https://doi.org/10.1016/j.aogh.2016.01.020.

(103) Bulka, C. M.; Davis, M. A.; Karagas, M. R.; Ahsan, H.; Argos, M. The Unintended Consequences of a Gluten-Free Diet. Epidemiol. Camb. Mass 2017, 28 (3), e24–e25. https://doi.org/10.1097/EDE.0000000000000640.

(104) ANSES. Rapport EAT-2.

(105) Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AFC). Safety of Aluminium from Dietary Intake; The EFSA Journal; 754; EFSA, 2008; p 754.

(106) Mujika, J. I.; Ruipérez, F.; Infante, I.; Ugalde, J. M.; Exley, C.; Lopez, X. Pro-Oxidant Activity of Aluminum: Stabilization of the Aluminum Superoxide Radical Ion. J. Phys. Chem. A 2011, 115 (24), 6717–6723. https://doi.org/10.1021/jp203290b.

(107) Campbell, A.; Bondy, S. C. Aluminum Induced Oxidative Events and Its Relation to Inflammation: A Role for the Metal in Alzheimer’s Disease. Cell. Mol. Biol. Noisy–Gd. Fr. 2000, 46 (4), 721–730.

(108) Maya, S.; Prakash, T.; Madhu, K. D.; Goli, D. Multifaceted Effects of Aluminium in Neurodegenerative Diseases: A Review. Biomed. Pharmacother. Biomedecine Pharmacother. 2016, 83, 746–754. https://doi.org/10.1016/j.biopha.2016.07.035.

(109) Exley, C.; Mold, M. J. Aluminium in Human Brain Tissue: How Much Is Too Much? J. Biol. Inorg. Chem. JBIC Publ. Soc. Biol. Inorg. Chem. 2019, 24 (8), 1279–1282. https://doi.org/10.1007/s00775-019-01710-0.

(110) Biedermann, M.; Ingenhoff, J.-E.; Zurfluh, M.; Richter, L.; Simat, T.; Harling, A.; Altkofer, W.; Helling, R.; Grob, K. Migration of Mineral Oil, Photoinitiators and Plasticisers from Recycled Paperboard into Dry Foods: A Study under Controlled Conditions. Food Addit. Contam. Part Chem. Anal. Control Expo. Risk Assess. 2013, 30 (5), 885–898. https://doi.org/10.1080/19440049.2013.786189.

(111) Pack, E. C.; Jang, D. Y.; Cha, M. G.; Koo, Y. J.; Kim, H. S.; Yu, H. H.; Park, S. C.; Kim, Y. S.; Lim, K. M.; Lee, S. H.; Choi, D. W. Potential for Short-Term Migration of Mineral Oil Hydrocarbons from Coated and Uncoated Food Contact Paper and Board into a Fatty Food Simulant. Food Addit. Contam. Part Chem. Anal. Control Expo. Risk Assess. 2020, 37 (5), 858–868. https://doi.org/10.1080/19440049.2020.1730985.

(112) Pan, J. J.; Chen, Y. F.; Zheng, J. G.; Hu, C.; Li, D.; Zhong, H. N. Migration of Mineral Oil Hydrocarbons from Food Contact Papers into Food Simulants and Extraction from Their Raw Materials. Food Addit. Contam. Part Chem. Anal. Control Expo. Risk Assess. 2021, 38 (5), 870–880. https://doi.org/10.1080/19440049.2021.1891300.

(113) EFSA CONTAM Panel. Scientific Opinion on Mineral Oil Hydrocarbons in Food; EFSA Journal; 10(6):2704; EFSA: Parma, 2013.

(114) ANSES. Avis de l’Anses Relatif à La Migration Des Composés d’huiles Minérales Dans Les Denrées Alimentaires à Partir Des Emballages En Papiers et Cartons Recyclés., 2017.

(115) Oqali. Bilan et Evolution de l’utilisation Des Additifs Dans Les Produits Transformes; INRA, 2019.

(116) Zhao, Z.; Qu, W.; Wang, K.; Chen, S.; Zhang, L.; Wu, D.; Chen, Z. Bisphenol A Inhibits Mucin 2 Secretion in Intestinal Goblet Cells through Mitochondrial Dysfunction and Oxidative Stress. Biomed. Pharmacother. Biomedecine Pharmacother. 2019, 111, 901–908. https://doi.org/10.1016/j.biopha.2019.01.007.

(117) Qu, W.; Zhao, Z.; Chen, S.; Zhang, L.; Wu, D.; Chen, Z. Bisphenol A Suppresses Proliferation and Induces Apoptosis in Colonic Epithelial Cells through Mitochondrial and MAPK/AKT Pathways. Life Sci. 2018, 208, 167–174. https://doi.org/10.1016/j.lfs.2018.07.040.

(118) Cocco, S.; Secondo, A.; Del Viscovo, A.; Procaccini, C.; Formisano, L.; Franco, C.; Esposito, A.; Scorziello, A.; Matarese, G.; Di Renzo, G.; Canzoniero, L. M. T. Polychlorinated Biphenyls Induce Mitochondrial Dysfunction in SH-SY5Y Neuroblastoma Cells. PLoS ONE 2015, 10 (6). https://doi.org/10.1371/journal.pone.0129481.

(119) Ashari, S.; Karami, M.; Shokrzadeh, M.; Ghandadi, M.; Ghassemi-Barghi, N.; Dashti, A.; Ranaee, M.; Mohammadi, H. The Implication of Mitochondrial Dysfunction and Mitochondrial Oxidative Damage in Di (2-Ethylhexyl) Phthalate Induced Nephrotoxicity in Both in Vivo and in Vitro Models. Toxicol. Mech. Methods 2020, 30 (6), 427–437. https://doi.org/10.1080/15376516.2020.1758980.

(120) Wang, X. H.; Souders, C. L.; Zhao, Y. H.; Martyniuk, C. J. Paraquat Affects Mitochondrial Bioenergetics, Dopamine System Expression, and Locomotor Activity in Zebrafish (Danio Rerio). Chemosphere 2018, 191, 106–117. https://doi.org/10.1016/j.chemosphere.2017.10.032.

(121) Yamada, S.; Kubo, Y.; Yamazaki, D.; Sekino, Y.; Kanda, Y. Chlorpyrifos Inhibits Neural Induction via Mfn1-Mediated Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cells. Sci. Rep. 2017, 7, 40925. https://doi.org/10.1038/srep40925.

(122) Zhang, C.; Qin, L.; Dou, D.-C.; Li, X.-N.; Ge, J.; Li, J.-L. Atrazine Induced Oxidative Stress and Mitochondrial Dysfunction in Quail (Coturnix C. Coturnix) Kidney via Modulating Nrf2 Signaling Pathway. Chemosphere 2018, 212, 974–982. https://doi.org/10.1016/j.chemosphere.2018.08.138.

(123) Zhang, Y.; Chen, H.; Fan, Y.; Yang, Y.; Gao, J.; Xu, W.; Xu, Z.; Li, Z.; Tao, L. Cytotoxic Effects of Bio-Pesticide Spinosad on Human Lung A549 cells. Chemosphere 2019, 230, 182–189. https://doi.org/10.1016/j.chemosphere.2019.05.042.

(124) Martin, C. A.; Myers, K. M.; Chen, A.; Martin, N. T.; Barajas, A.; Schweizer, F. E.; Krantz, D. E. Ziram, a Pesticide Associated with Increased Risk for Parkinson’s Disease, Differentially Affects the Presynaptic Function of Aminergic and Glutamatergic Nerve Terminals at the Drosophila Neuromuscular Junction. Exp. Neurol. 2016, 275 (0 1), 232–241. https://doi.org/10.1016/j.expneurol.2015.09.017.

(125) Merkley, S. D.; Moss, H. C.; Goodfellow, S. M.; Ling, C. L.; Meyer-Hagen, J. L.; Weaver, J.; Campen, M. J.; Castillo, E. F. Polystyrene Microplastics Induce an Immunometabolic Active State in Macrophages. Cell Biol. Toxicol. 2021. https://doi.org/10.1007/s10565-021-09616-x.

(126) Belyaeva, E. A.; Sokolova, T. V.; Emelyanova, L. V.; Zakharova, I. O. Mitochondrial Electron Transport Chain in Heavy Metal-Induced Neurotoxicity: Effects of Cadmium, Mercury, and Copper. Sci. World J. 2012, 2012. https://doi.org/10.1100/2012/136063.

(127) Mao, W. P.; Zhang, N. N.; Zhou, F. Y.; Li, W. X.; Liu, H. Y.; Feng, J.; Zhou, L.; Wei, C. J.; Pan, Y. B.; He, Z. J. Cadmium Directly Induced Mitochondrial Dysfunction of Human Embryonic Kidney Cells. Hum. Exp. Toxicol. 2011, 30 (8), 920–929. https://doi.org/10.1177/0960327110384286.

(128) Borchard, S.; Bork, F.; Rieder, T.; Eberhagen, C.; Popper, B.; Lichtmannegger, J.; Schmitt, S.; Adamski, J.; Klingenspor, M.; Weiss, K.-H.; Zischka, H. The Exceptional Sensitivity of Brain Mitochondria to Copper. Toxicol. Vitro Int. J. Publ. Assoc. BIBRA 2018, 51, 11–22. https://doi.org/10.1016/j.tiv.2018.04.012.

(129) Iglesias-González, J.; Sánchez-Iglesias, S.; Beiras-Iglesias, A.; Méndez-Álvarez, E.; Soto-Otero, R. Effects of Aluminium on Rat Brain Mitochondria Bioenergetics: An In Vitro and In Vivo Study. Mol. Neurobiol. 2017, 54 (1), 563–570. https://doi.org/10.1007/s12035-015-9650-z.

(130) Qu, D.; Jiang, M.; Huang, D.; Zhang, H.; Feng, L.; Chen, Y.; Zhu, X.; Wang, S.; Han, J. Synergistic Effects of The Enhancements to Mitochondrial ROS, P53 Activation and Apoptosis Generated by Aspartame and Potassium Sorbate in HepG2 Cells. Molecules 2019, 24 (3). https://doi.org/10.3390/molecules24030457.

(131) Kelmer Bracht, A.; Alvarez, M.; Bracht, A. Effects of Stevia Rebaudiana Natural Products on Rat Liver Mitochondria. Biochem. Pharmacol. 1985, 34 (6), 873–882. https://doi.org/10.1016/0006-2952(85)90769-5.

(132) Isei, M. O.; Kamunde, C. Effects of Copper and Temperature on Heart Mitochondrial Hydrogen Peroxide Production. Free Radic. Biol. Med. 2020, 147, 114–128. https://doi.org/10.1016/j.freeradbiomed.2019.12.006.

(133) Hoek, J. B.; Cahill, A.; Pastorino, J. G. Alcohol and Mitochondria: A Dysfunctional Relationship. Gastroenterology 2002, 122 (7), 2049–2063. https://doi.org/10.1053/gast.2002.33613.

(134) Stirnimann, G.; Kessebohm, K.; Lauterburg, B. Liver Injury Caused by Drugs: An Update. Swiss Med. Wkly. 2010, 140, w13080. https://doi.org/10.4414/smw.2010.13080.

(135) Upadhyay, A.; Amanullah, A.; Chhangani, D.; Joshi, V.; Mishra, R.; Mishra, A. Ibuprofen Induces Mitochondrial-Mediated Apoptosis Through Proteasomal Dysfunction. Mol. Neurobiol. 2016, 53 (10), 6968–6981. https://doi.org/10.1007/s12035-015-9603-6.

(136) Wang, X.; Wu, Q.; Liu, A.; Anadón, A.; Rodríguez, J.-L.; Martínez-Larrañaga, M.-R.; Yuan, Z.; Martínez, M.-A. Paracetamol: Overdose-Induced Oxidative Stress Toxicity, Metabolism, and Protective Effects of Various Compounds in Vivo and in Vitro. Drug Metab. Rev. 2017, 49 (4), 395–437. https://doi.org/10.1080/03602532.2017.1354014.

(137) Kaiserman, M. J.; Rickert, W. S. Carcinogens in Tobacco Smoke: Benzo[a]Pyrene from Canadian Cigarettes and Cigarette Tobacco. Am. J. Public Health 1992, 82 (7), 1023–1026. https://doi.org/10.2105/ajph.82.7.1023.

(138) Kazerouni, N.; Sinha, R.; Hsu, C. H.; Greenberg, A.; Rothman, N. Analysis of 200 Food Items for Benzo[a]Pyrene and Estimation of Its Intake in an Epidemiologic Study. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2001, 39 (5), 423–436. https://doi.org/10.1016/s0278-6915(00)00158-7.

(139) URIBARRI, J.; WOODRUFF, S.; GOODMAN, S.; CAI, W.; CHEN, X.; PYZIK, R.; YONG, A.; STRIKER, G. E.; VLASSARA, H. Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. J. Am. Diet. Assoc. 2010, 110 (6), 911-16.e12. https://doi.org/10.1016/j.jada.2010.03.018.

(140) Yamashita, N.; Kannan, K.; Taniyasu, S.; Horii, Y.; Petrick, G.; Gamo, T. A Global Survey of Perfluorinated Acids in Oceans. Mar. Pollut. Bull. 2005, 51 (8–12), 658–668. https://doi.org/10.1016/j.marpolbul.2005.04.026.

(141) Ji, W.; Xiao, L.; Ling, Y.; Ching, C.; Matsumoto, M.; Bisbey, R. P.; Helbling, D. E.; Dichtel, W. R. Removal of GenX and Perfluorinated Alkyl Substances from Water by Amine-Functionalized Covalent Organic Frameworks. J. Am. Chem. Soc. 2018, 140 (40), 12677–12681. https://doi.org/10.1021/jacs.8b06958.

(142) Brandsma, S. H.; Koekkoek, J. C.; van Velzen, M. J. M.; de Boer, J. The PFOA Substitute GenX Detected in the Environment near a Fluoropolymer Manufacturing Plant in the Netherlands. Chemosphere 2019, 220, 493–500. https://doi.org/10.1016/j.chemosphere.2018.12.135.

(143) Cannon, R. E.; Richards, A. C.; Trexler, A. W.; Juberg, C. T.; Sinha, B.; Knudsen, G. A.; Birnbaum, L. S. Effect of GenX on P-Glycoprotein, Breast Cancer Resistance Protein, and Multidrug Resistance-Associated Protein 2 at the Blood-Brain Barrier. Environ. Health Perspect. 2020, 128 (3), 37002. https://doi.org/10.1289/EHP5884.

(144) Behrens, P. A.; JC, K. J.; Bosker, T.; Rodrigues, J. F. D.; Koning, A. de; Tukker, A.; Leiden, C. voor M. Evaluating the environmental impacts of dietary recommendations. 114. https://openaccess.leidenuniv.nl/handle/1887/56157 (accessed 2019-11-18).

(145) Ritchie, H.; Reay, D.; Higgins, P. The Impact of Global Dietary Guidelines on Climate Change. Glob. Environ. Change 2018, 49, 46–55. https://doi.org/10.1016/j.gloenvcha.2018.02.005.

(146) Springmann, M.; Spajic, L.; Clark, M. A.; Poore, J.; Herforth, A.; Webb, P.; Rayner, M.; Scarborough, P. The Healthiness and Sustainability of National and Global Food Based Dietary Guidelines: Modelling Study. BMJ 2020, 370, m2322. https://doi.org/10.1136/bmj.m2322.

(147) Taylor, R. C.; Omed, H.; Edwards-Jones, G. The Greenhouse Emissions Footprint of Free-Range Eggs. Poult. Sci. 2014, 93 (1), 231–237. https://doi.org/10.3382/ps.2013-03489.

(148) Zhao, Y.; Shepherd, T. A.; Li, H.; Xin, H. Environmental Assessment of Three Egg Production Systems–Part I: Monitoring System and Indoor Air Quality. Poult. Sci. 2015, 94 (3), 518–533. https://doi.org/10.3382/ps/peu076.

(149) Taylor, R. C.; Omed, H.; Edwards-Jones, G. The Greenhouse Emissions Footprint of Free-Range Eggs. Poult. Sci. 2014, 93 (1), 231–237. https://doi.org/10.3382/ps.2013-03489.

(150) Vieux, Florent, Didier Rémond, Jean-Louis Peyraud, et Nicole Darmon. « Approximately Half of Total Protein Intake by Adults Must Be Animal-Based to Meet Non-Protein Nutrient-Based Recommendations with Variation Due to Age and Sex ». The Journal of Nutrition, 11 juillet 2022, nxac150. https://doi.org/10.1093/jn/nxac150.

(151) Cao, L.; Wang, W.; Yang, Y.; Yang, C.; Yuan, Z.; Xiong, S.; Diana, J. Environmental Impact of Aquaculture and Countermeasures to Aquaculture Pollution in China. Environ. Sci. Pollut. Res. Int. 2007, 14 (7), 452–462.

(152) Rice, J. C.; Garcia, S. M. Fisheries, Food Security, Climate Change, and Biodiversity: Characteristics of the Sector and Perspectives on Emerging Issues. ICES J. Mar. Sci. 2011, 68 (6), 1343–1353. https://doi.org/10.1093/icesjms/fsr041.

(153) Parker, R. W. R.; Blanchard, J. L.; Gardner, C.; Green, B. S.; Hartmann, K.; Tyedmers, P. H.; Watson, R. A. Fuel Use and Greenhouse Gas Emissions of World Fisheries. Nat. Clim. Change 2018, 8 (4), 333–337. https://doi.org/10.1038/s41558-018-0117-x.

(154) Froehlich, H. E.; Runge, C. A.; Gentry, R. R.; Gaines, S. D.; Halpern, B. S. Comparative Terrestrial Feed and Land Use of an Aquaculture-Dominant World. Proc. Natl. Acad. Sci. 2018, 115 (20), 5295–5300. https://doi.org/10.1073/pnas.1801692115.

(155) Duarte, C. M.; Wu, J.; Xiao, X.; Bruhn, A.; Krause-Jensen, D. Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation? In Front. Mar. Sci.; 2017. https://doi.org/10.3389/fmars.2017.00100.

(156) Caro, D.; Davis, S. J.; Bastianoni, S.; Caldeira, K. Global and Regional Trends in Greenhouse Gas Emissions from Livestock. Clim. Change 2014, 126 (1), 203–216. https://doi.org/10.1007/s10584-014-1197-x.

(157) Oonincx, D. G. A. B.; van Itterbeeck, J.; Heetkamp, M. J. W.; van den Brand, H.; van Loon, J. J. A.; van Huis, A. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PloS One 2010, 5 (12), e14445. https://doi.org/10.1371/journal.pone.0014445.

(158) van Huis, A. Potential of Insects as Food and Feed in Assuring Food Security. Annu. Rev. Entomol. 2013, 58, 563–583. https://doi.org/10.1146/annurev-ento-120811-153704.

(159) van Huis, A. Edible Insects Are the Future? Proc. Nutr. Soc. 2016, 75 (3), 294–305. https://doi.org/10.1017/S0029665116000069.

(160) Lynch, J.; Pierrehumbert, R. Climate Impacts of Cultured Meat and Beef Cattle. Front. Sustain. Food Syst. 2019, 3. https://doi.org/10.3389/fsufs.2019.00005.

(161) Chapter 5 : Food Security — Special Report on Climate Change and Land.

(162) Pan, A.; Sun, Q.; Bernstein, A. M.; Schulze, M. B.; Manson, J. E.; Willett, W. C.; Hu, F. B. Red Meat Consumption and Risk of Type 2 Diabetes: 3 Cohorts of US Adults and an Updated Meta-Analysis. Am. J. Clin. Nutr. 2011, 94 (4), 1088–1096. https://doi.org/10.3945/ajcn.111.018978.

(163) Orlich, M. J.; Singh, P. N.; Sabaté, J.; Jaceldo-Siegl, K.; Fan, J.; Knutsen, S.; Beeson, W. L.; Fraser, G. E. Vegetarian Dietary Patterns and Mortality in Adventist Health Study 2. JAMA Intern. Med. 2013, 173 (13), 1230–1238. https://doi.org/10.1001/jamainternmed.2013.6473.

(164) Song, M.; Fung, T. T.; Hu, F. B.; Willett, W. C.; Longo, V. D.; Chan, A. T.; Giovannucci, E. L. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality. JAMA Intern. Med. 2016, 176 (10), 1453–1463. https://doi.org/10.1001/jamainternmed.2016.4182.

(165) Etemadi, A.; Sinha, R.; Ward, M. H.; Graubard, B. I.; Inoue-Choi, M.; Dawsey, S. M.; Abnet, C. C. Mortality from Different Causes Associated with Meat, Heme Iron, Nitrates, and Nitrites in the NIH-AARP Diet and Health Study: Population Based Cohort Study. BMJ 2017, 357, j1957. https://doi.org/10.1136/bmj.j1957.

(166) Tharrey, M.; Mariotti, F.; Mashchak, A.; Barbillon, P.; Delattre, M.; Fraser, G. E. Patterns of Plant and Animal Protein Intake Are Strongly Associated with Cardiovascular Mortality: The Adventist Health Study-2 Cohort. Int. J. Epidemiol. 2018, 47 (5), 1603–1612. https://doi.org/10.1093/ije/dyy030.

(167) Segovia-Siapco, G.; Sabaté, J. Health and Sustainability Outcomes of Vegetarian Dietary Patterns: A Revisit of the EPIC-Oxford and the Adventist Health Study-2 Cohorts. Eur. J. Clin. Nutr. 2019, 72 (Suppl 1), 60–70. https://doi.org/10.1038/s41430-018-0310-z.

(168) Zheng, Y.; Li, Y.; Satija, A.; Pan, A.; Sotos-Prieto, M.; Rimm, E.; Willett, W. C.; Hu, F. B. Association of Changes in Red Meat Consumption with Total and Cause Specific Mortality among US Women and Men: Two Prospective Cohort Studies. BMJ 2019, 365, l2110. https://doi.org/10.1136/bmj.l2110.

(169) Biesbroek, S.; Bueno-de-Mesquita, H. B.; Peeters, P. H. M.; Verschuren, W. M.; van der Schouw, Y. T.; Kramer, G. F. H.; Tyszler, M.; Temme, E. H. M. Reducing Our Environmental Footprint and Improving Our Health: Greenhouse Gas Emission and Land Use of Usual Diet and Mortality in EPIC-NL: A Prospective Cohort Study. Environ. Health Glob. Access Sci. Source 2014, 13 (1), 27. https://doi.org/10.1186/1476-069X-13-27.

(170) Camilleri, G. M.; Verger, E. O.; Huneau, J.-F.; Carpentier, F.; Dubuisson, C.; Mariotti, F. Plant and Animal Protein Intakes Are Differently Associated with Nutrient Adequacy of the Diet of French Adults. J. Nutr. 2013, 143 (9), 1466–1473. https://doi.org/10.3945/jn.113.177113.

(171) Mariotti, F.; Huneau, J.-F. Plant and Animal Protein Intakes Are Differentially Associated with Large Clusters of Nutrient Intake That May Explain Part of Their Complex Relation with CVD Risk. Adv. Nutr. Bethesda Md 2016, 7 (3), 559–560. https://doi.org/10.3945/an.115.011932.

(172) Mariotti, F. Animal and Plant Protein Sources and Cardiometabolic Health. Adv. Nutr. Bethesda Md 2019, 10 (Suppl_4), S351–S366. https://doi.org/10.1093/advances/nmy110.

(173) OMS. Cancérogénicité de la consommation de viande rouge et de viande transformée. WHO. http://www.who.int/features/qa/cancer-red-meat/fr/ (accessed 2020-06-25).

(174) Song, P.; Wu, L.; Guan, W. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis. Nutrients 2015, 7 (12), 9872–9895. https://doi.org/10.3390/nu7125505.

(175) Crowe, W.; Elliott, C. T.; Green, B. D. A Review of the In Vivo Evidence Investigating the Role of Nitrite Exposure from Processed Meat Consumption in the Development of Colorectal Cancer. Nutrients 2019, 11 (11), E2673. https://doi.org/10.3390/nu11112673.

(176) Valko, M.; Morris, H.; Cronin, M. T. D. Metals, Toxicity and Oxidative Stress. Curr. Med. Chem. 2005, 12 (10), 1161–1208. https://doi.org/10.2174/0929867053764635.

(177) Brouwer, I. A.; Wanders, A. J.; Katan, M. B. Effect of Animal and Industrial Trans Fatty Acids on HDL and LDL Cholesterol Levels in Humans–a Quantitative Review. PloS One 2010, 5 (3), e9434. https://doi.org/10.1371/journal.pone.0009434.

(178) Gebauer, S. K.; Destaillats, F.; Dionisi, F.; Krauss, R. M.; Baer, D. J. Vaccenic Acid and Trans Fatty Acid Isomers from Partially Hydrogenated Oil Both Adversely Affect LDL Cholesterol: A Double-Blind, Randomized Controlled Trial. Am. J. Clin. Nutr. 2015, 102 (6), 1339–1346. https://doi.org/10.3945/ajcn.115.116129.

(179) Brownlee, M. Advanced Protein Glycosylation in Diabetes and Aging. Annu. Rev. Med. 1995, 46, 223–234. https://doi.org/10.1146/annurev.med.46.1.223.

(180) Vlassara, H.; Cai, W.; Crandall, J.; Goldberg, T.; Oberstein, R.; Dardaine, V.; Peppa, M.; Rayfield, E. J. Inflammatory Mediators Are Induced by Dietary Glycotoxins, a Major Risk Factor for Diabetic Angiopathy. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (24), 15596–15601. https://doi.org/10.1073/pnas.242407999.

(181) Clarke, R. E.; Dordevic, A. L.; Tan, S. M.; Ryan, L.; Coughlan, M. T. Dietary Advanced Glycation End Products and Risk Factors for Chronic Disease: A Systematic Review of Randomised Controlled Trials. Nutrients 2016, 8 (3), 125. https://doi.org/10.3390/nu8030125.

(182) Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On Our Plates or Eating at Our Table? A New Analysis of the Feed/Food Debate. Glob. Food Secur. 2017, 14, 1–8. https://doi.org/10.1016/j.gfs.2017.01.001.

(183) van Zanten, H. H. E.; Meerburg, B. G.; Bikker, P.; Herrero, M.; de Boer, I. J. M. Opinion Paper: The Role of Livestock in a Sustainable Diet: A Land-Use Perspective. Anim. Int. J. Anim. Biosci. 2016, 10 (4), 547–549. https://doi.org/10.1017/S1751731115002694.

(184) Remond, D. Quelle Place Pour Les Produits Animaux Dans l’alimentation de Demain ? INRA Prod. Anim. 2019, 32 (2), 147–157. https://doi.org/10.20870/productions-animales.2019.32.2.2500.

(185) INRA. Quelle contribution de l’agriculture française à la réduction des émissions de gaz à effet de serre ?; Rapport d’étude; INRA, 2013; p 454.

(186) Röös, E.; Patel, M.; Spångberg, J.; Carlsson, G.; Rydhmer, L. Limiting Livestock Production to Pasture and By-Products in a Search for Sustainable Diets. Food Policy 2016, 58, 1–13. https://doi.org/10.1016/j.foodpol.2015.10.008.

(187) Lemaire, G.; Franzluebbers, A.; Carvalho, P. C. de F.; Dedieu, B. Integrated Crop-Livestock Systems: Strategies to Achieve Synergy between Agricultural Production and Environmental Quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. https://doi.org/10.1016/j.agee.2013.08.009.

(188) Chaudhary, A.; Kastner, T. Land Use Biodiversity Impacts Embodied in International Food Trade. Glob. Environ. Change 2016, 38, 195–204. https://doi.org/10.1016/j.gloenvcha.2016.03.013.

(189) Couvreur, S.; Hurtaud, C.; Lopez, C.; Delaby, L.; Peyraud, J. L. The Linear Relationship between the Proportion of Fresh Grass in the Cow Diet, Milk Fatty Acid Composition, and Butter Properties. J. Dairy Sci. 2006, 89 (6), 1956–1969. https://doi.org/10.3168/jds.S0022-0302(06)72263-9.

(190) Eugène, M.; Massé, D.; Chiquette, J.; Benchaar, C. Meta-Analysis on the Effects of Lipid Supplementation on Methane Production in Lactating Dairy Cows. Can. J. Anim. Sci. 2008, 88, 331–337. https://doi.org/10.4141/CJAS07112.

(191) Van Elswyk, M. E.; McNeill, S. H. Impact of Grass/Forage Feeding versus Grain Finishing on Beef Nutrients and Sensory Quality: The U.S. Experience. Meat Sci. 2014, 96 (1), 535–540. https://doi.org/10.1016/j.meatsci.2013.08.010.

(192) Aleksandrowicz, L.; Green, R.; Joy, E. J. M.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PloS One 2016, 11 (11), e0165797. https://doi.org/10.1371/journal.pone.0165797.

(193) Dinu, M.; Abbate, R.; Gensini, G. F.; Casini, A.; Sofi, F. Vegetarian, Vegan Diets and Multiple Health Outcomes: A Systematic Review with Meta-Analysis of Observational Studies. Crit. Rev. Food Sci. Nutr. 2017, 57 (17), 3640–3649. https://doi.org/10.1080/10408398.2016.1138447.

(194) Olfert, M. D.; Wattick, R. A. Vegetarian Diets and the Risk of Diabetes. Curr. Diab. Rep. 2018, 18 (11). https://doi.org/10.1007/s11892-018-1070-9.

(195) Toumpanakis, A.; Turnbull, T.; Alba-Barba, I. Effectiveness of Plant-Based Diets in Promoting Well-Being in the Management of Type 2 Diabetes: A Systematic Review. BMJ Open Diabetes Res. Care 2018, 6 (1). https://doi.org/10.1136/bmjdrc-2018-000534.

(196) Chen, Z.; Zuurmond, M. G.; van der Schaft, N.; Nano, J.; Wijnhoven, H. A. H.; Ikram, M. A.; Franco, O. H.; Voortman, T. Plant versus Animal Based Diets and Insulin Resistance, Prediabetes and Type 2 Diabetes: The Rotterdam Study. Eur. J. Epidemiol. 2018, 33 (9), 883–893. https://doi.org/10.1007/s10654-018-0414-8.

(197) Farmer, B.; Larson, B. T.; Fulgoni, V. L.; Rainville, A. J.; Liepa, G. U. A Vegetarian Dietary Pattern as a Nutrient-Dense Approach to Weight Management: An Analysis of the National Health and Nutrition Examination Survey 1999-2004. J. Am. Diet. Assoc. 2011, 111 (6), 819–827. https://doi.org/10.1016/j.jada.2011.03.012.

(198) Rizzo, N. S.; Jaceldo-Siegl, K.; Sabate, J.; Fraser, G. E. Nutrient Profiles of Vegetarian and Nonvegetarian Dietary Patterns. J. Acad. Nutr. Diet. 2013, 113 (12), 1610–1619. https://doi.org/10.1016/j.jand.2013.06.349.

(199) Sobiecki, J. G.; Appleby, P. N.; Bradbury, K. E.; Key, T. J. High Compliance with Dietary Recommendations in a Cohort of Meat Eaters, Fish Eaters, Vegetarians, and Vegans: Results from the European Prospective Investigation into Cancer and Nutrition-Oxford Study. Nutr. Res. N. Y. N 2016, 36 (5), 464–477. https://doi.org/10.1016/j.nutres.2015.12.016.

(200) Allès, B.; Baudry, J.; Méjean, C.; Touvier, M.; Péneau, S.; Hercberg, S.; Kesse-Guyot, E. Comparison of Sociodemographic and Nutritional Characteristics between Self-Reported Vegetarians, Vegans, and Meat-Eaters from the NutriNet-Santé Study. Nutrients 2017, 9 (9). https://doi.org/10.3390/nu9091023.

(201) Schmidt, J. A.; Rinaldi, S.; Scalbert, A.; Ferrari, P.; Achaintre, D.; Gunter, M. J.; Appleby, P. N.; Key, T. J.; Travis, R. C. Plasma Concentrations and Intakes of Amino Acids in Male Meat-Eaters, Fish-Eaters, Vegetarians and Vegans: A Cross-Sectional Analysis in the EPIC-Oxford Cohort. Eur. J. Clin. Nutr. 2016, 70 (3), 306–312. https://doi.org/10.1038/ejcn.2015.144.

(202) de Gavelle, E.; Huneau, J.-F.; Bianchi, C. M.; Verger, E. O.; Mariotti, F. Protein Adequacy Is Primarily a Matter of Protein Quantity, Not Quality: Modeling an Increase in Plant:Animal Protein Ratio in French Adults. Nutrients 2017, 9 (12). https://doi.org/10.3390/nu9121333.

(203) Young, V. R.; Pellett, P. L. Plant Proteins in Relation to Human Protein and Amino Acid Nutrition. Am. J. Clin. Nutr. 1994, 59 (5 Suppl), 1203S-1212S. https://doi.org/10.1093/ajcn/59.5.1203S.

(204) Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016, 116 (12), 1970–1980. https://doi.org/10.1016/j.jand.2016.09.025.

(205) de Gavelle, E.; Davidenko, O.; Fouillet, H.; Delarue, J.; Darcel, N.; Huneau, J.-F.; Mariotti, F. Self-Declared Attitudes and Beliefs Regarding Protein Sources Are a Good Prediction of the Degree of Transition to a Low-Meat Diet in France. Appetite 2019, 142, 104345. https://doi.org/10.1016/j.appet.2019.104345.

(206) Bowman, S. A. A Vegetarian-Style Dietary Pattern Is Associated with Lower Energy, Saturated Fat, and Sodium Intakes; and Higher Whole Grains, Legumes, Nuts, and Soy Intakes by Adults: National Health and Nutrition Examination Surveys 2013–2016. Nutrients 2020, 12 (9), 2668. https://doi.org/10.3390/nu12092668.

(207) Bakaloudi, D. R.; Halloran, A.; Rippin, H. L.; Oikonomidou, A. C.; Dardavesis, T. I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and Adequacy of the Vegan Diet. A Systematic Review of the Evidence. Clin. Nutr. 2021, 40 (5), 3503–3521. https://doi.org/10.1016/j.clnu.2020.11.035.

(208) Clem, J.; Barthel, B. A Look at Plant-Based Diets. Mo. Med. 2021, 118 (3), 233–238.

(209) Watanabe, F. Vitamin B12 Sources and Bioavailability. Exp. Biol. Med. Maywood NJ 2007, 232 (10), 1266–1274. https://doi.org/10.3181/0703-MR-67.

(210) Mozafar, A. Enrichment of Some B-Vitamins in Plants with Application of Organic Fertilizers. Plant Soil 1994, 167 (2), 305–311. https://doi.org/10.1007/BF00007957.

(211) Rizzo, G.; Laganà, A. S.; Rapisarda, A. M. C.; La Ferrera, G. M. G.; Buscema, M.; Rossetti, P.; Nigro, A.; Muscia, V.; Valenti, G.; Sapia, F.; Sarpietro, G.; Zigarelli, M.; Vitale, S. G. Vitamin B12 among Vegetarians: Status, Assessment and Supplementation. Nutrients 2016, 8 (12). https://doi.org/10.3390/nu8120767.

(212) Selinger, E.; Kühn, T.; Procházková, M.; Anděl, M.; Gojda, J. Vitamin B12 Deficiency Is Prevalent Among Czech Vegans Who Do Not Use Vitamin B12 Supplements. Nutrients 2019, 11 (12). https://doi.org/10.3390/nu11123019.

(213) Tucker, K. L.; Rich, S.; Rosenberg, I.; Jacques, P.; Dallal, G.; Wilson, P. W.; Selhub, J. Plasma Vitamin B-12 Concentrations Relate to Intake Source in the Framingham Offspring Study. Am. J. Clin. Nutr. 2000, 71 (2), 514–522. https://doi.org/10.1093/ajcn/71.2.514.

(214) Gibson, R. S.; Raboy, V.; King, J. C. Implications of Phytate in Plant-Based Foods for Iron and Zinc Bioavailability, Setting Dietary Requirements, and Formulating Programs and Policies. Nutr. Rev. 2018, 76 (11), 793–804. https://doi.org/10.1093/nutrit/nuy028.

(215) Pawlak, R.; Berger, J.; Hines, I. Iron Status of Vegetarian Adults: A Review of Literature. Am. J. Lifestyle Med. 2016, 12 (6), 486–498. https://doi.org/10.1177/1559827616682933.

(216) Haider, L. M.; Schwingshackl, L.; Hoffmann, G.; Ekmekcioglu, C. The Effect of Vegetarian Diets on Iron Status in Adults: A Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2018, 58 (8), 1359–1374. https://doi.org/10.1080/10408398.2016.1259210.

(217) Hsu, E. Plant-Based Diets and Bone Health: Sorting through the Evidence. Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27 (4), 248–252. https://doi.org/10.1097/MED.0000000000000552.

(218) Foster, M.; Chu, A.; Petocz, P.; Samman, S. Effect of Vegetarian Diets on Zinc Status: A Systematic Review and Meta-Analysis of Studies in Humans: Zinc and Vegetarian Diets. J. Sci. Food Agric. 2013, 93 (10), 2362–2371. https://doi.org/10.1002/jsfa.6179.

(219) Foster, M.; Samman, S. Vegetarian Diets across the Lifecycle: Impact on Zinc Intake and Status. Adv. Food Nutr. Res. 2015, 74, 93–131. https://doi.org/10.1016/bs.afnr.2014.11.003.

(220) Schüpbach, R.; Wegmüller, R.; Berguerand, C.; Bui, M.; Herter-Aeberli, I. Micronutrient Status and Intake in Omnivores, Vegetarians and Vegans in Switzerland. Eur. J. Nutr. 2017, 56 (1), 283–293. https://doi.org/10.1007/s00394-015-1079-7.

(221) Eveleigh, E. R.; Coneyworth, L. J.; Avery, A.; Welham, S. J. M. Vegans, Vegetarians, and Omnivores: How Does Dietary Choice Influence Iodine Intake? A Systematic Review. Nutrients 2020, 12 (6), E1606. https://doi.org/10.3390/nu12061606.

(222) Burns-Whitmore, B.; Froyen, E.; Heskey, C.; Parker, T.; San Pablo, G. Alpha-Linolenic and Linoleic Fatty Acids in the Vegan Diet: Do They Require Dietary Reference Intake/Adequate Intake Special Consideration? Nutrients 2019, 11 (10). https://doi.org/10.3390/nu11102365.

(223) Wallace, T. C.; Blusztajn, J. K.; Caudill, M. A.; Klatt, K. C.; Natker, E.; Zeisel, S. H.; Zelman, K. M. Choline: The Underconsumed and Underappreciated Essential Nutrient. Nutr. Today 2018, 53 (6), 240–253. https://doi.org/10.1097/NT.0000000000000302.

(224) Derbyshire, E. Could We Be Overlooking a Potential Choline Crisis in the United Kingdom? BMJ Nutr. Prev. Health 2019, bmjnph-2019-000037. https://doi.org/10.1136/bmjnph-2019-000037.

(225) Burke, D. G.; Chilibeck, P. D.; Parise, G.; Candow, D. G.; Mahoney, D.; Tarnopolsky, M. Effect of Creatine and Weight Training on Muscle Creatine and Performance in Vegetarians. Med. Sci. Sports Exerc. 2003, 35 (11), 1946–1955. https://doi.org/10.1249/01.MSS.0000093614.17517.79.

(226) Venderley, A. M.; Campbell, W. W. Vegetarian Diets : Nutritional Considerations for Athletes. Sports Med. Auckl. NZ 2006, 36 (4), 293–305. https://doi.org/10.2165/00007256-200636040-00002.

(227) Everaert, I.; Mooyaart, A.; Baguet, A.; Zutinic, A.; Baelde, H.; Achten, E.; Taes, Y.; De Heer, E.; Derave, W. Vegetarianism, Female Gender and Increasing Age, but Not CNDP1 Genotype, Are Associated with Reduced Muscle Carnosine Levels in Humans. Amino Acids 2011, 40 (4), 1221–1229. https://doi.org/10.1007/s00726-010-0749-2.

(228) Rogerson, D. Vegan Diets: Practical Advice for Athletes and Exercisers. J. Int. Soc. Sports Nutr. 2017, 14 (1), 36. https://doi.org/10.1186/s12970-017-0192-9.

(229) Nab, C.; Maslin, M. Life Cycle Assessment Synthesis of the Carbon Footprint of Arabica Coffee: Case Study of Brazil and Vietnam Conventional and Sustainable Coffee Production and Export to the United Kingdom. Geo Geogr. Environ. 2020, 7 (2), e00096. https://doi.org/10.1002/geo2.96.

(230) Pérez-Neira, D.; Copena, D.; Armengot, L.; Simón, X. Transportation Can Cancel out the Ecological Advantages of Producing Organic Cacao: The Carbon Footprint of the Globalized Agrifood System of Ecuadorian Chocolate. J. Environ. Manage. 2020, 276, 111306. https://doi.org/10.1016/j.jenvman.2020.111306.

(231) FAO. Empreinte carbone de la filière de la banane. 5.

(232) Observatoire de la formation des prix et des marges des produits alimentaires. Rapport Au Parlement 2016; FranceAgriMer, 2016.

(233) UFC Que Choisir. Sur-marges sur les fruits et légumes bio  La grande distribution matraque toujours les consommateurs ! (accessed 2019-12-08).

(234) INC. L’évolution du pouvoir d’achat entre 2009 et 2018; INC, 2019.

(235) de Saint Pol, T. Les mutations de la consommation. Constructif 2021, 59 (2), 10–15. https://doi.org/10.3917/const.059.0010.

(236) Hiç, C.; Pradhan, P.; Rybski, D.; Kropp, J. P. Food Surplus and Its Climate Burdens. Environ. Sci. Technol. 2016, 50 (8), 4269–4277. https://doi.org/10.1021/acs.est.5b05088.

(237) Ishangulyyev, R.; Kim, S.; Lee, S. H. Understanding Food Loss and Waste-Why Are We Losing and Wasting Food? Foods Basel Switz. 2019, 8 (8), E297. https://doi.org/10.3390/foods8080297.

(238) Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Buendía, E. C.; Shukla, P. R.; Slade, R.; Connors, S. Résumé à l’intention des décideurs. 39.

(239) Couturier, C.; Charru, M.; Doublet, S.; Pointereau, P. Le Scénario Afterres2050 Version 2016; Le scénario Afterres2050; Solagro, 2016.

(240) Lopez Barrera, E.; Hertel, T. Global Food Waste across the Income Spectrum: Implications for Food Prices, Production and Resource Use. Food Policy 2021, 98, 101874. https://doi.org/10.1016/j.foodpol.2020.101874.

(241) Barański, M.; Srednicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G. B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Tahvonen, R.; Janovská, D.; Niggli, U.; Nicot, P.; Leifert, C. Higher Antioxidant and Lower Cadmium Concentrations and Lower Incidence of Pesticide Residues in Organically Grown Crops: A Systematic Literature Review and Meta-Analyses. Br. J. Nutr. 2014, 112 (5), 794–811. https://doi.org/10.1017/S0007114514001366.

(242) Smith-Spangler, C.; Brandeau, M. L.; Hunter, G. E.; Bavinger, J. C.; Pearson, M.; Eschbach, P. J.; Sundaram, V.; Liu, H.; Schirmer, P.; Stave, C.; Olkin, I.; Bravata, D. M. Are Organic Foods Safer or Healthier than Conventional Alternatives?: A Systematic Review. Ann. Intern. Med. 2012, 157 (5), 348–366. https://doi.org/10.7326/0003-4819-157-5-201209040-00007.

(243) Kesse-Guyot, E.; Pointereau, P. Résultats du projet BioNutriNet : impacts d’un régime bio sur la santé et l’environnement; Solagro, 2019.

(244) Baudry, J.; Assmann, K. E.; Touvier, M.; Allès, B.; Seconda, L.; Latino-Martel, P.; Ezzedine, K.; Galan, P.; Hercberg, S.; Lairon, D.; Kesse-Guyot, E. Association of Frequency of Organic Food Consumption With Cancer Risk: Findings From the NutriNet-Santé Prospective Cohort Study. JAMA Intern. Med. 2018, 178 (12), 1597–1606. https://doi.org/10.1001/jamainternmed.2018.4357.

(245) Worthington, V. Nutritional Quality of Organic versus Conventional Fruits, Vegetables, and Grains. J. Altern. Complement. Med. N. Y. N 2001, 7 (2), 161–173. https://doi.org/10.1089/107555301750164244.

(246) Dangour, A. D.; Dodhia, S. K.; Hayter, A.; Allen, E.; Lock, K.; Uauy, R. Nutritional Quality of Organic Foods: A Systematic Review. Am. J. Clin. Nutr. 2009, 90 (3), 680–685. https://doi.org/10.3945/ajcn.2009.28041.

(247) Ibanez, F.; Bang, W. Y.; Lombardini, L.; Cisneros-Zevallos, L. Solving the Controversy of Healthier Organic Fruit: Leaf Wounding Triggers Distant Gene Expression Response of Polyphenol Biosynthesis in Strawberry Fruit (Fragaria x Ananassa). Sci. Rep. 2019, 9. https://doi.org/10.1038/s41598-019-55033-w.

(248) Daley, C. A.; Abbott, A.; Doyle, P. S.; Nader, G. A.; Larson, S. A Review of Fatty Acid Profiles and Antioxidant Content in Grass-Fed and Grain-Fed Beef. Nutr. J. 2010, 9, 10. https://doi.org/10.1186/1475-2891-9-10.

(249) Butler, G.; Stergiadis, S.; Seal, C.; Eyre, M.; Leifert, C. Fat Composition of Organic and Conventional Retail Milk in Northeast England. J. Dairy Sci. 2011, 94 (1), 24–36. https://doi.org/10.3168/jds.2010-3331.

(250) Średnicka-Tober, D.; Barański, M.; Seal, C. J.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; Cozzi, G.; Larsen, M. K.; Jordon, T.; Niggli, U.; Sakowski, T.; Calder, P. C.; Burdge, G. C.; Sotiraki, S.; Stefanakis, A.; Stergiadis, S.; Yolcu, H.; Chatzidimitriou, E.; Butler, G.; Stewart, G.; Leifert, C. Higher PUFA and N-3 PUFA, Conjugated Linoleic Acid, α-Tocopherol and Iron, but Lower Iodine and Selenium Concentrations in Organic Milk: A Systematic Literature Review and Meta- and Redundancy Analyses. Br. J. Nutr. 2016, 115 (6), 1043–1060. https://doi.org/10.1017/S0007114516000349.

(251) Średnicka-Tober, D.; Barański, M.; Seal, C.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; Cozzi, G.; Krogh Larsen, M.; Jordon, T.; Niggli, U.; Sakowski, T.; Calder, P. C.; Burdge, G. C.; Sotiraki, S.; Stefanakis, A.; Yolcu, H.; Stergiadis, S.; Chatzidimitriou, E.; Butler, G.; Stewart, G.; Leifert, C. Composition Differences between Organic and Conventional Meat: A Systematic Literature Review and Meta-Analysis. Br. J. Nutr. 2016, 115 (06), 994–1011. https://doi.org/10.1017/S0007114515005073.

(252) Weill, P.; Schmitt, B.; Chesneau, G.; Daniel, N.; Safraou, F.; Legrand, P. Effects of Introducing Linseed in Livestock Diet on Blood Fatty Acid Composition of Consumers of Animal Products. Ann. Nutr. Metab. 2002, 46 (5), 182–191. https://doi.org/10.1159/000065405.

(253) Samman, S.; Kung, F.; Carter, L.; Foster, M.; Ahmad, Z.; Phuyal, J.; Petocz, P. Fatty Acid Composition of Certified Organic, Conventional and Omega-3 Eggs. Food Chem. 2009, 116, 911–914. https://doi.org/10.1016/j.foodchem.2009.03.046.

(254) Muller, A.; Schader, C.; El-Hage Scialabba, N.; Brüggemann, J.; Isensee, A.; Erb, K.-H.; Smith, P.; Klocke, P.; Leiber, F.; Stolze, M.; Niggli, U. Strategies for Feeding the World More Sustainably with Organic Agriculture. Nat. Commun. 2017, 8 (1), 1290. https://doi.org/10.1038/s41467-017-01410-w.

(255) Seufert, V.; Ramankutty, N.; Foley, J. A. Comparing the Yields of Organic and Conventional Agriculture. Nature 2012, 485 (7397), 229–232. https://doi.org/10.1038/nature11069.

(256) Petit, J.; Jobin, P.; Fédération d’agriculture biologique du Québec. La fertilisation organique des cultures: les bases; Fédération d’agriculture biologique du Québec: Longueuil, Québec, 2005.

(257) Bengtsson, J.; Ahnström, J.; Weibull, A.-C. The Effects of Organic Agriculture on Biodiversity and Abundance: A Meta-Analysis. J. Appl. Ecol. 2005, 42 (2), 261–269. https://doi.org/10.1111/j.1365-2664.2005.01005.x.

(258) Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mäder, P.; Stolze, M.; Smith, P.; Scialabba, N. E.-H.; Niggli, U. Enhanced Top Soil Carbon Stocks under Organic Farming. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (44), 18226–18231. https://doi.org/10.1073/pnas.1209429109.

(259) Reganold, J. P.; Wachter, J. M. Organic Agriculture in the Twenty-First Century. Nat. Plants 2016, 2, 15221. https://doi.org/10.1038/nplants.2015.221.

(260) Seufert, V.; Ramankutty, N. Many Shades of Gray—The Context-Dependent Performance of Organic Agriculture. Sci. Adv. 2017, 3 (3), e1602638. https://doi.org/10.1126/sciadv.1602638.

(261) Seconda, L.; Baudry, J.; Allès, B.; Hamza, O.; Boizot-Szantai, C.; Soler, L.-G.; Galan, P.; Hercberg, S.; Lairon, D.; Kesse-Guyot, E. Assessment of the Sustainability of the Mediterranean Diet Combined with Organic Food Consumption: An Individual Behaviour Approach. Nutrients 2017, 9 (1). https://doi.org/10.3390/nu9010061.

(262) Crowder, D. W.; Reganold, J. P. Financial Competitiveness of Organic Agriculture on a Global Scale. Proc. Natl. Acad. Sci. 2015, 112 (24), 7611–7616. https://doi.org/10.1073/pnas.1423674112.

(263) Conseil de l’Union Européenne. Règlement (CE) 889/2008; 2008; Vol. 250.

(264) Conseil de l’Union Européenne. Liste Des Composés Phytosanitaires Autorisés En Agriculture Biologique; 2007; Vol. 189.

(265) Commission Européenne. Approval of active substances. European Commission. https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_ppp_app-proc_cfs_report-201307.pdf (accessed 2019-12-13).

(266) Joseph A. Cotruvo, J.; Aron, A. T.; Ramos-Torres, K. M.; Chang, C. J. Synthetic Fluorescent Probes for Studying Copper in Biological Systems. Chem. Soc. Rev. 2015, 44 (13), 4400–4414. https://doi.org/10.1039/C4CS00346B.

(267) EFSA. The 2017 European Union Report on Pesticide Residues in Food. EFSA J. 2019, 17 (6), e05743. https://doi.org/10.2903/j.efsa.2019.5743.

(268) Mollison, B.; Holmgren, D. Permaculture One : A Perennial Agriculture for Human Settlements; [Australia] : Tagari, 1990.

(269) Sohy, V.; de Tombeur, F.; Cornélis, J.-T. Influence des pratiques de la Ferme du Bec Hellouin sur la fertilité et la matière organique du sol. 19.

(270) Loconto, A. M.; Poisot, A. S.; Santacoloma, P.; Vicovaro, M. Institutional Innovations in Ecological Organic Agriculture in Africa. In Achieving Social and Economic Development in Africa through Ecological and Organic Agricultural Alternatives.; Food and Agriculture Organization of the United Nations., 2016; p np.

(271) Pimbert, M.; Lemke, S. Using Agroecology to Enhance Dietary Diversity. UNSCN News 2018, 43, 33–42. (270)   Preiser, R.; Biggs, R.; De Vos, A.; Folke, C. Social-Ecological Systems as Complex Adaptive Systems: Organizing Principles for Advancing Research Methods and Approaches. Ecol. Soc. 2018, 23 (4). https://doi.org/10.5751/ES-10558-230446.

(272) Preiser, R.; Biggs, R.; De Vos, A.; Folke, C. Social-Ecological Systems as Complex Adaptive Systems: Organizing Principles for Advancing Research Methods and Approaches. Ecol. Soc. 2018, 23 (4). https://doi.org/10.5751/ES-10558-230446.

Partie 4 : Les vingt clés de l’alimentation d’Homo Conscientius en pratique

(1)   Eisenberg, D. T. A.; Kuzawa, C. W.; Hayes, M. G. Worldwide Allele Frequencies of the Human Apolipoprotein E Gene: Climate, Local Adaptations, and Evolutionary History. Am. J. Phys. Anthropol. 2010, 143 (1), 100–111. https://doi.org/10.1002/ajpa.21298.

(2)   Mahley, R. W.; Huang, Y. Apolipoprotein e Sets the Stage: Response to Injury Triggers Neuropathology. Neuron 2012, 76 (5), 871–885. https://doi.org/10.1016/j.neuron.2012.11.020.

(3)   Ce, F. Evolution of the Human Lifespan, Past, Present, and Future: Phases in the Evolution of Human Life Expectancy in Relation to the Inflammatory Load. Proc. Am. Philos. Soc. 2012, 156 (1).

(4)   D, E.-L.; Hm, R.; Am, M. Apolipoprotein E Gene Polymorphism and Risk of Type 2 Diabetes and Cardiovascular Disease. Cardiovasc. Diabetol. 2016, 15. https://doi.org/10.1186/s12933-016-0329-1.

(5)   Liu, S.; Liu, J.; Weng, R.; Gu, X.; Zhong, Z. Apolipoprotein E Gene Polymorphism and the Risk of Cardiovascular Disease and Type 2 Diabetes. BMC Cardiovasc. Disord. 2019, 19 (1), 213. https://doi.org/10.1186/s12872-019-1194-0.

(6)   Christensen, K.; Johnson, T. E.; Vaupel, J. W. The Quest for Genetic Determinants of Human Longevity: Challenges and Insights. Nat. Rev. Genet. 2006, 7 (6), 436. https://doi.org/10.1038/nrg1871.

(7)   de Chaves, E. P.; Narayanaswami, V. Apolipoprotein E and Cholesterol in Aging and Disease in the Brain. Future Lipidol. 2008, 3 (5), 505–530. https://doi.org/10.2217/17460875.3.5.505.

(8)   Safieh, M.; Korczyn, A. D.; Michaelson, D. M. ApoE4: An Emerging Therapeutic Target for Alzheimer’s Disease. BMC Med. 2019, 17, 64. https://doi.org/10.1186/s12916-019-1299-4.

(9)   Garcia, A. R.; Finch, C.; Gatz, M.; Kraft, T.; Eid Rodriguez, D.; Cummings, D.; Charifson, M.; Buetow, K.; Beheim, B. A.; Allayee, H.; Thomas, G. S.; Stieglitz, J.; Gurven, M. D.; Kaplan, H.; Trumble, B. C. APOE4 Is Associated with Elevated Blood Lipids and Lower Levels of Innate Immune Biomarkers in a Tropical Amerindian Subsistence Population. eLife 10, e68231. https://doi.org/10.7554/eLife.68231.

(10) Carrieri, G.; Bonafè, M.; De Luca, M.; Rose, G.; Varcasia, O.; Bruni, A.; Maletta, R.; Nacmias, B.; Sorbi, S.; Corsonello, F.; Feraco, E.; Andreev, K. F.; Yashin, A. I.; Franceschi, C.; De Benedictis, G. Mitochondrial DNA Haplogroups and APOE4 Allele Are Non-Independent Variables in Sporadic Alzheimer’s Disease. Hum. Genet. 2001, 108 (3), 194–198. https://doi.org/10.1007/s004390100463.

(11) Tambini, M. D.; Pera, M.; Kanter, E.; Yang, H.; Guardia-Laguarta, C.; Holtzman, D.; Sulzer, D.; Area-Gomez, E.; Schon, E. A. ApoE4 Upregulates the Activity of Mitochondria-Associated ER Membranes. EMBO Rep. 2016, 17 (1), 27–36. https://doi.org/10.15252/embr.201540614.

(12) Yin, J.; Nielsen, M.; Carcione, T.; Li, S.; Shi, J. Apolipoprotein E Regulates Mitochondrial Function through the PGC-1α-Sirtuin 3 Pathway. Aging. 2019, 11 (23), 11148–11156. https://doi.org/10.18632/aging.102516.

(13) Simonovitch, S.; Schmukler, E.; Masliah, E.; Pinkas-Kramarski, R.; Michaelson, D. M. The Effects of APOE4 on Mitochondrial Dynamics and Proteins in Vivo. J. Alzheimers Dis. JAD. 2019, 70 (3), 861–875. https://doi.org/10.3233/JAD-190074.

(14) Yin, J.; Reiman, E. M.; Beach, T. G.; Serrano, G. E.; Sabbagh, M. N.; Nielsen, M.; Caselli, R. J.; Shi, J. Effect of ApoE Isoforms on Mitochondria in Alzheimer Disease. Neurology. 2020, 94 (23), e2404–e2411. https://doi.org/10.1212/WNL.0000000000009582.

(15) Schmukler, E.; Solomon, S.; Simonovitch, S.; Goldshmit, Y.; Wolfson, E.; Michaelson, D. M.; Pinkas-Kramarski, R. Altered Mitochondrial Dynamics and Function in APOE4-Expressing Astrocytes. Cell Death Dis. 2020, 11 (7), 578. https://doi.org/10.1038/s41419-020-02776-4.

(16) Fullerton, S. M.; Clark, A. G.; Weiss, K. M.; Nickerson, D. A.; Taylor, S. L.; Stengârd, J. H.; Salomaa, V.; Vartiainen, E.; Perola, M.; Boerwinkle, E.; Sing, C. F. Apolipoprotein E Variation at the Sequence Haplotype Level: Implications for the Origin and Maintenance of a Major Human Polymorphism. Am. J. Hum. Genet. 2000, 67 (4), 881–900. https://doi.org/10.1086/303070.

(17) Corbo, R. M.; Scacchi, R. Apolipoprotein E (APOE) Allele Distribution in the World. Is APOE*4 a “thrifty” Allele? Ann. Hum. Genet. 1999, 63 (Pt 4), 301–310. https://doi.org/10.1046/j.1469-1809.1999.6340301.x.

(18) Finch, C. E.; Stanford, C. B. Meat-Adaptive Genes and the Evolution of Slower Aging in Humans. Q. Rev. Biol. 2004, 79 (1), 3–50. https://doi.org/10.1086/381662.

(19) Smith, B. Dental Development and the Evolution of Life History in Hominidae. Am. J. Phys. Anthropol. 1991, 86, 157–174. https://doi.org/10.1002/ajpa.1330860206.

(20) Henke, W.; Tattersall, I. Handbook of Paleoanthropology: Vol I:Principles, Methods and Approaches Vol II:Primate Evolution and Human Origins Vol III:Phylogeny of Hominids; Springer Science & Business Media, 2007.

(21) Raichlen, D. A.; Alexander, G. E. Exercise, APOE Genotype, and the Evolution of the Human Lifespan. Trends Neurosci. 2014, 37 (5), 247–255. https://doi.org/10.1016/j.tins.2014.03.001.

(22) Schuit, A. J.; Feskens, E. J.; Launer, L. J.; Kromhout, D. Physical Activity and Cognitive Decline, the Role of the Apolipoprotein E4 Allele. Med. Sci. Sports Exerc. 2001, 33 (5), 772–777. https://doi.org/10.1097/00005768-200105000-00015.

(23) Rovio, S.; Kåreholt, I.; Helkala, E.-L.; Viitanen, M.; Winblad, B.; Tuomilehto, J.; Soininen, H.; Nissinen, A.; Kivipelto, M. Leisure-Time Physical Activity at Midlife and the Risk of Dementia and Alzheimer’s Disease. Lancet Neurol. 2005, 4 (11), 705–711. https://doi.org/10.1016/S1474-4422(05)70198-8.

(24) Smith, J. C.; Nielson, K. A.; Woodard, J. L.; Seidenberg, M.; Rao, S. M. Physical Activity and Brain Function in Older Adults at Increased Risk for Alzheimer’s Disease. Brain Sci. 2013, 3 (1), 54–83. https://doi.org/10.3390/brainsci3010054.

(25) Abou Khalil, Y.; Marmontel, O.; Ferrières, J.; Paillard, F.; Yelnik, C.; Carreau, V.; Charrière, S.; Bruckert, E.; Gallo, A.; Giral, P.; Philippi, A.; Bluteau, O.; Boileau, C.; Abifadel, M.; Di-Filippo, M.; Carrié, A.; Rabès, J.-P.; Varret, M. APOE Molecular Spectrum in a French Cohort with Primary Dyslipidemia. Int. J. Mol. Sci. 2022, 23 (10), 5792. https://doi.org/10.3390/ijms23105792.

(26) Huebbe, P.; Nebel, A.; Siegert, S.; Moehring, J.; Boesch-Saadatmandi, C.; Most, E.; Pallauf, J.; Egert, S.; Müller, M. J.; Schreiber, S.; Nöthlings, U.; Rimbach, G. APOE Ε4 Is Associated with Higher Vitamin D Levels in Targeted Replacement Mice and Humans. FASEB J. 2011, 25 (9), 3262–3270. https://doi.org/10.1096/fj.11-180935.

(27) Finch, C. E. Evolution of the Human Lifespan and Diseases of Aging: Roles of Infection, Inflammation, and Nutrition. Proc. Natl. Acad. Sci. 2010, 107 (suppl_1), 1718–1724. https://doi.org/10.1073/pnas.0909606106.

(28) Kuo, C.-L.; Pilling, L. C.; Atkins, J. L.; Masoli, J. A. H.; Delgado, J.; Kuchel, G. A.; Melzer, D. APOE E4 Genotype Predicts Severe COVID-19 in the UK Biobank Community Cohort. J. Gerontol. A. Biol. Sci. Med. Sci. 2020, 75 (11), 2231–2232. https://doi.org/10.1093/gerona/glaa131.

(29) Kurki, S. N.; Kantonen, J.; Kaivola, K.; Hokkanen, L.; Mäyränpää, M. I.; Puttonen, H.; Martola, J.; Pöyhönen, M.; Kero, M.; Tuimala, J.; Carpén, O.; Kantele, A.; Vapalahti, O.; Tiainen, M.; Tienari, P. J.; Kaila, K.; Hästbacka, J.; Myllykangas, L. APOE Ε4 Associates with Increased Risk of Severe COVID-19, Cerebral Microhaemorrhages and Post-COVID Mental Fatigue: A Finnish Biobank, Autopsy and Clinical Study. Acta Neuropathol. Commun. 2021, 9 (1), 1–13. https://doi.org/10.1186/s40478-021-01302-7.

(30) Mg, G.; Dg, G.; K, G.; X, T.; Kk, G.; A, E.; E, D.; Dp, B. To Keto or Not to Keto? A Systematic Review of Randomized Controlled Trials Assessing the Effects of Ketogenic Therapy on Alzheimer Disease. Adv. Nutr. Bethesda Md. 2020, 11 (6). https://doi.org/10.1093/advances/nmaa073.

(31) Norwitz, N. G.; Saif, N.; Ariza, I. E.; Isaacson, R. S. Precision Nutrition for Alzheimer’s Prevention in ApoE4 Carriers. Nutrients. 2021, 13 (4), 1362. https://doi.org/10.3390/nu13041362.